
End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

Jonas Hofmann
∗

ETH Zurich

Switzerland

jonas.hofmann1@tu-darmstadt.de

Kien Tuong Truong

ETH Zurich

Switzerland

kientuong.truong@inf.ethz.ch

ABSTRACT
End-to-end encrypted cloud storage offers a way for individuals

and organisations to delegate their storage needs to a third-party,

while keeping control of their data using cryptographic techniques.

We conduct a cryptographic analysis of various products in the

ecosystem, showing that many providers fail to provide an adequate

level of security. In particular, we provide an in-depth analysis of

five end-to-end encrypted cloud storage systems, namely Sync,

pCloud, Icedrive, Seafile, and Tresorit, in the setting of a malicious

server. These companies cumulatively have over 22 million users

and are major providers in the field. We unveil severe cryptographic

vulnerabilities in four of them. Our attacks invalidate the marketing

claims made by the providers of these systems, showing that a

malicious server can, in some cases, inject files in the encrypted

storage of users, tamper with file data, and even gain direct access to

the content of the files. Many of our attacks affect multiple providers

in the same way, revealing common failure patterns in independent

cryptographic designs. We conclude by discussing the significance

of these patterns beyond the security of the specific providers.

1 INTRODUCTION
Cloud storage is a method for offloading digital data to a remote

third-party, called the provider, who stores and manages the data

on their own infrastructure. Thanks to the low-cost and high-

availability guarantees, providers such as Google Drive, iCloud,

Microsoft OneDrive, DropBox or MEGA have become very popular,

amassing more than four billion users combined and user data in

the order of exabytes [8, 14–16, 38, 39]. Almost all of these providers

use encryption-at-rest to protect the user data from external attack-

ers. If we, however, consider the case in which the provider itself is

compromised, encryption-at-rest does not provide any protection

since the provider controls the encryption keys.

To secure user data in this setting, whichwe call the compromised,
or malicious, server setting, providers have started deploying end-

to-end encryption (E2EE), where user files are encrypted with keys

managed by the user, rather than the server. Examples of such

providers are MEGA, Nextcloud, Sync [49], Tresorit [1], Seafile [35],

Icedrive [31], and pCloud [43]. Despite holding a minority of the

user base in the cloud storage space, these providers are a primary

choice for relevant organisations and privacy-savvy users who wish

to keep control of their data. For example, Nextcloud is used by the

German and Serbian governments as well as Amnesty International.

Sync is used by the Canadian government, the Canadian Red Cross,

and the states of Vermont and North Dakota. Tresorit lists SAP,

Pfizer, and Allianz as customers.

∗
Also with Technische Universität Darmstadt.

Withmany important entities using E2EE cloud storage, analysing

their security becomes a pressing concern. Recent works have un-

covered vulnerabilities in two of the most used providers, MEGA

and Nextcloud [3, 4, 8, 10, 40, 47]. This raises the question: are

there providers in the broader ecosystem that have better security

guarantees than MEGA and Nextcloud? After analysing five major

providers, we answer this question in the negative for four of them

by unveiling attacks against their systems. In particular, we high-

light flawed anti-patterns that are common across the providers we

analysed and that introduce vulnerabilities in their protocols.

1.1 Our Contributions
We contribute a detailed analysis of several cloud storage systems

that claim to provide end-to-end encryption, focussing on storage

systems that either have relevant enterprise-level customers or

are estimated to have a large user base. Namely, we analyse Sync,

pCloud, Icedrive, Seafile and Tresorit, collectively servingmore than

22 million customers, storing hundreds of petabytes of data and

managing files in the order of billions [34, 44, 48]. These providers

frequently emerge at the top of internet searches for queries such

as “best end-to-end encrypted cloud storage” and “most secure

cloud storage”. Given the influence such search results likely have

on the average non-technical person, we consider our selection

of providers to be representative of the options most commonly

chosen by users. While, clearly, there are always more providers

to be analysed, we leave them to future work. Indeed, our exam-

ples, combined with the existing analyses of MEGA and Nextcloud,

already showcase critical vulnerabilities in a large majority of the

field and thus provide an adequate basis to raise concerns about

the current state of E2EE cloud storage.

We analyse the end-to-end encryption of these providers in the

natural setting of a compromised server. This is a fair expectation for

E2EE cloud storage: security should be preserved even if the attacker

has full access to the server and can directly interact with the user.

This threat model also aligns with the advertisement of various

cloud providers, as many of them claim to be unable to access user

data thanks to what they dub “zero-knowledge encryption”.

Not all of our attacks are sophisticated in nature, which means

that they are within reach of attackers who are not necessarily

skilled in cryptography. Indeed, our attacks are highly practical

and can be carried out without significant resources. Additionally,

while some of these attacks are not novel from a cryptographic

perspective, they emphasise that E2EE cloud storage as deployed

in practice fails at a trivial level and often does not require more

profound cryptanalysis to break.

Our attacks are not limited to violating confidentiality but rather

focus on many aspects that are relevant to cloud storage systems.

This is a minor revision of a paper to appear in the proceedings of the 31st ACM Conference on Computer and Communications Security

(CCS 2024)

Jonas Hofmann & Kien Tuong Truong

In particular, in addition to the confidentiality of file contents, we

target metadata (with a focus on file names and location) as well

as the integrity and authenticity of files. In total, we present ten

classes of attacks, split into four categories.

We find four classes of attacks that violate confidentiality:

(1) Lack of authentication of user key material. In Sync and

pCloud the adversary can exploit the absent authentication

of public-key encrypted ciphertexts to inject adversary-

controlled keys, which the client will use to encrypt their

data. Furthermore, in pCloud, the adversary can abuse the

unauthenticated symmetric encryption scheme to over-

write parts of the private key. This allows overwriting the

user’s key with an attacker-controlled key, which will be

used to encrypt all files uploaded from that point onwards.

(2) Unauthenticated public keys. Sync and Tresorit use per-user
public keys to share files with other users. These public keys

are provided by the (possibly malicious) server and, thus,

need to be authenticated. We have observed that neither

Sync nor Tresorit provides such an authentication mecha-

nism.

(3) Protocol downgrade. In Seafile, the adversary can downgrade
the security of the encryption protocol, which allows it to

attempt brute-force of user passwords.

(4) Link-sharing pitfalls. In Sync, the client shares a file by send-
ing a link which encodes the password needed to decrypt.

Whenever the link is clicked, it sends the password to the

server, trivially breaking confidentiality.

Two more attack classes target file data:

(5) Unauthenticated encryption modes. The usage by Icedrive

and Seafile of unauthenticated cipher modes such as CBC

allows an attacker to tamper with the content of files in a

semi-controlled manner.

(6) Unauthenticated chunking. In Seafile and pCloud, files are

chunked prior to encryption, but the list of chunks is not

properly authenticated, allowing an adversary to swap

chunks around and remove chunks from files.

For metadata, we provide two classes of attacks:

(7) Tamperingwith file names and location.None of the providers,
except for Tresorit, have mechanisms to cryptographically

bind file locations and file names to the contents, allowing

an adversary to move files to different locations in the stor-

age and swap their names. In some cases, the adversary can

also tamper with the names of the files.

(8) Tampering with file metadata. For all providers, metadata

(e.g. file size, file type, and modification date) is not authen-

ticated, which allows an adversary to change it arbitrarily.

Finally, we present two classes of attacks that can allow an at-

tacker to inject files into the user’s storage, making it appear as if

the user had uploaded them:

(9) Injection of folders. In Sync, a malicious server can make a

folder appear as if the user uploaded it by exploiting the

peculiarities of the sharing mechanism and by building on

top of our metadata-editing attack, which makes a shared

folder appear as if it was a standard folder.

(10) Injection of files. For pCloud, we use the lack of authentica-

tion of RSA ciphertexts to inject rogue file keys, along with

rogue file content in the user’s storage.

Additionally, we point out how some providers frequently leak in-

formation about files, such as their length or similarity (e.g. through

the usage of deterministic encryption). Many providers also leak

the metadata of files, as well as the directory structure, and where

each file is located. We do not consider these to be attacks per se, as
a malicious server need not take any action to achieve this leakage.

At the same time, we consider them to be severe shortcomings that

can impact security for users.

In summary, our attacks are representative of a wide gap in the

security guarantees of these providers and showcase fundamental

design flaws in real-world E2EE cloud storage systems. Our analysis

complements the existing work on MEGA and Nextcloud, as it

shows that cryptographic shortcomings are not limited to a few

providers but are, instead, widespread in the broader ecosystem.

We conclude with a discussion on the security of E2EE cloud

storage. First, we collect the anti-patterns that emerged from our

investigation. Many of these failure modes are well-known in the

cryptographic community, and they can be largely avoided by using

standardised primitives. Despite this, our investigation highlights

how they still appear in real-world products. For each anti-pattern,

we also contribute with mitigations that would improve security

in the short term. Second, we discuss the steps needed to improve

the ecosystem, focussing on the analysis and standardisation of a

secure E2EE cloud storage protocol.

1.2 Related Work
Analyses of Cloud Storage Systems. MEGA has been the subject

of scrutiny of previous works [4, 8, 47], which found severe vulner-

abilities in MEGA’s bespoke cryptographic design. Among others,

a malicious server could inject files in the personal storage of users

and recover their private keys.

In a blog post, Böek [10] presents an attack on the server-side en-

cryption of OwnCloud, exploiting their usage of AES-CFB, an unau-

thenticated block cipher mode, in order to backdoor a Windows

executable. Niehage, in [40], finds vulnerabilities in Nextcloud’s

server-side encryption, showing that an attacker could swap chunks

of files, inject new files, and tamper with file data. Albrecht et al. [3]

study the client-side encryption of NextCloud, where they show

that the lack of authentication of RSA ciphertexts allowed the server

to decrypt user data and inject files. Many variants of these attacks

re-emerge in our analysis.

Key Overwriting Attacks. In E2EE cloud storage, it is common to

store encrypted cryptographic material on a (possibly untrusted)

server. This setting has been studied for OpenPGP by Klima and

Rosa in [29] and later by Bruseghini et al. [11] and led to the discov-

ery of a new class of attacks called Key Overwriting (KO) attacks.

We provide a novel variant of a KO attack where the adversary,

rather than attempting to recover the private key, forces the user to

use an attacker-controlled keypair for encryption and decryption.

Creating Secure E2EE Cloud Storage. On the constructive side, a

survey by Virvilis et al. [50] lists various security properties that are

desirable from cloud storage providers, including confidentiality

End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

and integrity. In their work, they highlight the importance of a

holistic security approach when developing secure cloud storage.

Backendal et al. [7] present the main challenges for developers of

E2EE cloud storage systems, including key management and file

sharing, and call for the standardisation of a secure E2EE cloud stor-

age protocol, which they argue will require a joint effort between

cryptographers, vendors and implementers. Recently, Backendal

et al. [6] proposed a formal model to capture the security of E2EE

cloud storage systems, as well as a protocol that provably achieves

the desired security properties. Our work is complementary to such

efforts, as it challenges the notion that cloud storage is a “solved

problem”. It is, in fact, a field where many providers fail, often

trivially, to provide the security guarantees they claim to offer.

1.3 Ethical Considerations
We have notified Sync, pCloud, Seafile, and Icedrive of our findings

on 23.04.24, proposing a coordinated disclosure of the vulnerabilities

and suggesting the standard 90 day disclosure window. The Icedrive

team acknowledged our email on the same day and, after a brief

exchange, opted not to address the issueswe raised. The Seafile team

acknowledged the email on the 24.04.24, and replied on the 29.04.24,

informing us that they will patch the protocol downgrade issue by

forcing version 2 to be used, and stating that storage integrity is

not in the scope of their design. As of 04.09.24, Sync and pCloud

have yet to respond to multiple attempts to contact them through

different channels.We contacted Tresorit on 27.09.24 to discuss their

cryptographic design. They acknowledged our email on 30.09.24.

For Seafile, we analysed the open-source code of the desktop

application, as the web application sends the user password to

the server and thus does not provide end-to-end encryption. For

all other providers, we analysed the JavaScript code that was ex-

ecuted in the browser and that was directly available to us using

the browser development tools. Sync additionally provides the non-

minified source code of their web application in the browser, which

we used for our investigation. We did not disassemble or decompile

any application and we did not attempt to reverse engineer any

server functionality. For testing, we have exclusively used accounts

under our control and we have avoided any action that would have

put excessive load on the provider’s infrastructure or that would

have affected other users. To the best of our knowledge, we did not

violate the terms of service of any of the providers.

We are not affiliated with any of the providers we analyse, nor

any of their competitors.

1.4 Paper Structure
We describe the protocol and key hierarchy of all five providers

in Section 2. We then present our attacks against these providers

in Section 3. In Section 4, we abstract the common problems with

current implementations of end-to-end encrypted cloud storage,

drawing wider lessons from our analysis. Finally, we give our con-

clusions in Section 5.

2 DESCRIPTION OF THE PROVIDERS
2.1 Cryptographic Primitives and Notation
In the remainder of the paper, we use a number of symmetric

keys (for encryption or MAC), which we denote by 𝐾 and that we

label using a subscript (e.g.𝐾master,𝐾file). Asymmetric keypairs (for

encryption) are denoted by (sk, pk), indicating the private key and

the public key, respectively.

Symmetric encryption primitives are described by combining a

block cipher with a block cipher mode of operation and the relevant

operation. For example, AES encryption in Cipher Block Chaining

(CBC) mode would be represented by the function AES.CBC-Enc.
The order of parameters is key, data to encrypt/decrypt, IV (if

applicable) (e.g. AES.CBC-Enc(𝐾master,𝑚, IV)). For HMAC, we al-
ways specify the underlying hash function. For instance, HMAC-
SHA512(𝐾,𝑚) is the HMAC algorithm with SHA512 as the hash
function, using key 𝐾 and applied on message𝑚.

With ⊕, we refer to bitwise xor. String concatenation is written

as ∥, while |𝑥 | refers to the length of 𝑥 in bytes. We use Python-style

slicing notation for strings and arrays, with indices starting from

0: 𝑠 [𝑎 : 𝑏] indicates a string composed of all elements from the

𝑎-th element of 𝑠 to the (𝑏 − 1)-th element (inclusive). If 𝑎 or 𝑏 are

omitted, they assume the values 0 and |𝑠 |, respectively.

2.2 Description of the Protocols
The security of all the cloud storage systems we analyse pivots on

a user-chosen password P (often distinct from the one used to au-

thenticate to the server). This is a natural choice, as the user should

be able to access their account from multiple devices and having to

transfer high-entropy cryptographic material across devices would

negatively impact user experience. However, a password is unsuit-

able to be used directly for cryptographic operations, so a Key

Derivation Function (KDF) like PBKDF2 or scrypt is used to obtain
the key material needed for the following steps of the protocols.

Because of the reliance on password-derived key material, the se-

curity of the systemswe analyse is highly dependent on the strength

of the user’s password. A malicious provider can always attempt

an offline brute-force attack or a dictionary attack to recover a

password, which is a fundamental limitation of password-based en-

cryption. Good password policies and the usage of a memory-hard

password hashing function help to mitigate this risk.

When describing key hierarchies, we distinguish between crypto-

graphic keys which are used to encrypt other keys (Key Encrypting

Keys, or KEK), keys which are used to encrypt data (Data Encrypt-

ing Keys, or DEK), and keys which are used to encrypt metadata

(Metadata Encrypting Keys, or MEK). In general, we simplify the

protocol descriptions by glossing over details that are irrelevant for

our analysis or attacks (e.g. encoding format).

We represent the key hierarchies for all providers in Fig. 1. Addi-

tional information about the folder structure of each provider can

be found in Appendix A.

2.2.1 Sync. Sync is a Canadian company founded in 2011, which

offers its cloud storage services to over 2 million users worldwide,

including entities such as the government of Canada, the university

of Toronto, and the Canadian red cross, and stores more than 130

petabytes of data [48]. The company offers a web application, as

well as desktop and mobile clients. In our analysis, we focus only

on the web application.

Cryptographic Primitives. For symmetric encryption, Sync uses

AES-GCMwith random IVs. Asymmetric encryption uses RSAwith

Jonas Hofmann & Kien Tuong Truong

symmetric encryption asymmetric encryption key derivation function

P

Kmaster K′
master

Kmeta(sk,pk)

Plink

KlinkKshare

Kfile

* *

*

(a) Sync

P

Kmaster

(sk, pk)

KfolderKfile

* *

(b) pCloud

P

Kmaster

*

(c) Icedrive

P

Kmaster IVmaster

Krandom

Kfile IVfile

*

*

(d) Seafile

P

Kmaster

(sk, pk)(skA, pkA)

Kprofile

Kgroup

(skgkf,pkgkf)

Kgkf

(sksh, pksh)

Kfolder

Kfile

Plink

Klink

*

*

(e) Tresorit

Figure 1: Key hierarchies of all providers investigated. Arrows marked with ∗ indicate a one-to-many relationship. All the key
material that is not derived from something else is implicitly generated using an appropriate key generation function.

PKCS1v1.5 padding. Sync makes use of PBKDF2-SHA256 with a

random 12 byte salt value as KDF.

Key Hierarchy. During the registration process, the Sync client

derives two 32 byte KEKs𝐾master and𝐾
′
master

from P using the KDF

with different salt values. The client then samples a new RSA key-

pair (sk, pk) and uses 𝐾master to encrypt it. The client also samples

a 32 byte symmetric MEK 𝐾meta (encrypted under 𝐾master) and a 32

byte symmetric KEK 𝐾
share

, called the share key (encrypted under

pk). All the ciphertexts are then offloaded to the server. Whenever

the client logs in, the key material is fetched, decrypted, and stored

in the browser.

When uploading a file, its contents are symmetrically encrypted

with a freshly generated DEK 𝐾
file

and the file name is encrypted

under the user’s MEK. Then, 𝐾
file

is encrypted using the share key

𝐾
share

and, finally, the encrypted DEK, the encrypted file data, and

the encrypted file name are offloaded to the server. Folder names

are also encrypted using the MEK and sent to the server.

Sharing. Sync allows files to be shared by using either link shar-
ing or by permanent sharing of a folder. Link sharing allows anyone
in possession of a special link to access a file. To achieve this, the

user randomly samples a string of 32 alphanumerical characters,

called the link password P
link

. A link share key𝐾
link

is then derived

from P
link

using the KDF and used to encrypt the file name and

𝐾
file

. These two ciphertexts are then uploaded to the server. The

password P
link

is included in the share link as part of the URL path,

which allows other users to derive 𝐾
link

, and thus decrypt the file.

Sync also allows for folders to be permanently shared. When a

userA wants to create a folder and share it with user B,A samples

a new KEK �̃�
share

and uses it to symmetrically encrypt the DEKs

of all files in the folder. These encrypted DEKs are uploaded to the

server. The share key �̃�
share

is encrypted against B’s public key,
which A obtains by querying the server, and then forwarded by

the server via email to B. We note that B’s key is not authenticated,
an issue which we elaborate on in Section 3.1.2.

2.2.2 pCloud. The Swiss-based pCloud is the largest provider that

we consider, with over 19 million users [43]. Upon signing up,

users are required to set up an additional password specifically

for accessing their encrypted storage, distinct from their regular

authentication password. We ignore the authentication password,

as it is not involved in cryptographic computations, and call the

additional password P.

Cryptographic Primitives. For symmetric encryption, pCloud

uses different primitives depending on the type of data encrypted.

When using a symmetric KEK to encrypt a private key, pCloud uses

a custom variant of counter mode, depicted in Fig. 2. When using a

symmetric DEK to encrypt file data, pCloud uses a bespoke block

cipher mode which uses a synthetized IV. When using a symmetric

MEK to encrypt file names, a different variation of CBC mode is

used. We describe the pseudocode for the last two procedures in

Algorithm 1.

For asymmetric encryption, pCloud uses RSAwithOAEP padding,

with SHA1 as the hash function. Key derivation is done using

PBKDF2-SHA512 with a 64 byte random salt.

Key Hierarchy. Upon registration of a new user, the password

P is used to derive a 32 byte symmetric key 𝐾master and a 16 byte

IVmaster. Furthermore, an RSA keypair (sk, pk) is generated and

the private key is encrypted with 𝐾master and IVmaster using the

custom variant of counter mode in Fig. 2.

Whenever the client wants to upload a file, they retrieve the

encrypted private key sk, which they decrypt using their password,

and the (unauthenticated) public key pk from the server. Since the

private key and the public key have been retrieved separately and

the public key is not authenticated, the client has to check for their

End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

AES

IV

LEEncode(0)

C0

K

P0

AES

IV

LEEncode(1)

C1

K

P1

· · · AES

IV

LEEncode(n)

Cn

K

Pn

Figure 2: The CTR-based block cipher mode used by pCloud
using key 𝐾 and initialization vector IV, encrypting blocks
of plaintext 𝑃𝑖 (16 bytes in size, except for possibly 𝑃𝑛) and
obtaining the ciphertext blocks 𝐶𝑖 . The function LEEncode
computes the 16 byte little-endian encoding of the input.

consistency. pCloud does so by making the client sample a random

hexadecimal string of 32 characters, which it then encrypts with pk

and decrypts with sk, verifying in the end that the original string is

returned. If this check is successful, the client generates a 32 byte

symmetric encryption key 𝐾file

enc
and a 128 byte HMAC key 𝐾file

HMAC
.

The file is then split into sectors, each of 4096 bytes except possibly

for the last one. Each sector is encrypted under 𝐾file

enc
and 𝐾file

HMAC
,

using the procedure pCloudSectorEncrypt in Algorithm 1, and

yielding a ciphertext-tag pair (𝑐, 𝜏). To provide integrity for the file,

all tags are included as leafs of a 128-ary Merkle tree, where each

internal node is created by computing the HMAC-SHA512 of (up
to) 128 tags from the layer below. The process stops when a layer

consisting of only one node is created. Each layer of the Merkle

tree is included alongside the file and checked for integrity when

the file is downloaded.

When creating a folder, pCloud generates two keys, 𝐾 folder

enc
and

𝐾 folder

HMAC
, which will be used to encrypt the names of the contained

files and subfolders, using pCloudNameEncrypt in Algorithm 1.

Sharing. pCloud does not support sharing encrypted files.

2.2.3 Icedrive. Icedrive is the youngest provider we analyse, as its
cloud storage product was released in 2019. It has been estimated

to have as many as 150’000 customers [23]. They provide a web

application, which we focus on in our analysis, as well as clients

for desktop and mobile.

Cryptographic Primitives. Icedrive has an unusual choice of block
cipher, as they employ TwoFish and motivate this choice by claim-

ing that TwoFish is “widely accepted by cryptographers as a more

secure solution than AES/Rijndael” [32]. The block cipher is used

to encrypt files in a custom block cipher mode, which we depict in

Fig. 3. When encrypting file and folder names, a standard CBC con-

struction is used, albeit with a fixed IV. For key derivation, Icedrive

uses PBKDF2-SHA256.

Key Hierarchy. In Icedrive, the passwordP is used in conjunction

with PBKDF2-SHA256 and a random salt, stored on the server, to

obtain a 32 byte symmetric key 𝐾master, used as both a DEK and a

Algorithm 1 pCloud’s encryption procedure for files

1: procedure pCloudNameEncrypt(𝐾enc, 𝐾HMAC,𝑚)

2: 𝑚 ←𝑚 ∥ 08· (16−(|𝑚 | mod 16)) //zero-padding
3: if |𝑚 | = 16 then
4: return AES.ECB-Enc(𝐾enc,𝑚 ⊕ 𝐾HMAC [: 16])
5: IV← HMAC-SHA512(𝐾HMAC,𝑚[16 :]) [: 16]
6: return AES.CBC-Enc(𝐾enc,𝑚, IV)

1: procedure pCloudSectorEncrypt(𝐾enc, 𝐾HMAC,𝑚, 𝑖sector)

2: 𝜌←${0, 1}128

3: IV← HMAC-SHA512(𝐾HMAC,𝑚 ∥ 𝑖sector ∥ 𝜌) [: 16]
4: 𝑐 ← AES.CBC-Enc(𝐾enc,𝑚, IV)
5: 𝜏 ← AES.ECB-Enc(𝐾enc, 𝜌 [: 8] ∥ IV ∥ 𝜌 [8 :])
6: return (𝑐, 𝜏)

MEK. Prior to encryption, files are split into chunks of 2 megabytes

and each chunk is encrypted with the same key and IV using the

procedure described in Fig. 3, with TwoFish as the underlying block

cipher and IV
′ = “1234567887654321”. Note that files are padded

with zero bytes, with the length of the padding in bytes 𝜆 encoded

in the header, which makes the padding process reversible. The

unpadding procedure, however, does not check whether the bytes

of padding are zero, so the last 𝜆 bytes are removed, regardless

of their value. The use of the same IV for all chunks, means that

chunks which have (at least) the first 16 bytes in common will

also share the first blocks of ciphertext, revealing their similarity

to the adversary. We also note that, even though file encryption

uses a randomized IV, the process samples the IV from a restricted

set of characters (letters and digits), rather than from {0, 1}128. A
formal analysis similar to the one in [9] shows that this peculiar

choice weakens the IND-CPA security bound of AES-CBC as used

in Icedrive, as it increases the probability of an IV collision, which

can be detected due to the deterministic encryption of the header.

File and directory names are encrypted using TwoFish.CBC-Enc
under𝐾master and the fixed IV

′
. The considerations above regarding

the fixed IV also apply here.

Sharing. Icedrive does not support sharing encrypted files.

2.2.4 Seafile. Seafile differs from the other cloud storage providers,

as its code is open-source, for both client and server. Much like

Nextcloud, they do not host server instances themselves, but rather

allow users and companies to host their own servers. They boast

11k stars on GitHub [22] and serve more than 1 million users, in-

cluding organisations such as Kaspersky, the Humboldt University

in Berlin, the University of Strasbourg and the University of Turku.

Seafile offers a web interface, a desktop application and a mobile

application. The web application is not truly end-to-end encrypted,

as it sends the password to the server for decryption. This short-

coming is advertised in the Seafile admin manual [21] and is the

reason why we focus only on the desktop client.

Cryptographic Primitives. The cryptographic primitives used by

the Seafile client depend on the version of the encryption proto-

col. For backwards compatibility, the client supports all versions.

Jonas Hofmann & Kien Tuong Truong

IV′ CBC
Enc

IV λ

IV

CBC
Enc

CBC
Enc

. . .

. . .

. . .

CBC
Enc

h

m 0...0

λ

Figure 3: The encryption procedure for files in Icedrive. The
message m (in blue) is zero-padded and split into chunks of
2
22 bytes, except for the first (222 − 32 bytes), and possibly the
last one. Chunks are encrypted with 𝐾master (omitted) and a
random IV. The IV and the padding length 𝜆 are encrypted
using 𝐾master and a fixed IV′ and prepended to the encrypted
chunks to obtain the ciphertext (in orange). Note that the
header ℎ is deterministically encrypted.

Table 1: Summary of all the primitives used by Seafile on all
supported versions.

Version Encryption

Key Derivation Function

Algorithm Iterations Salt

0 AES-256-CBC
† BytesToKey-SHA1 3 None

1 AES-128-CBC
† BytesToKey-SHA1 2

19
Fixed

‡

2 AES-256-CBC
† PBKDF2-SHA256 1000 Fixed

‡

3 AES-128-ECB PBKDF2-SHA256 1000 Random

†
The IV is fixed and used for multiple encryptions.

‡
The salt is hard-coded in the client: 0xda9045c306c7cc26.

We provide all the primitives used in each version in Table 1. The

BytesToKey algorithm, as specified by the OpenSSL documenta-

tion [5], consists of repeated application of a chosen hash function

𝐻 and can be recursively described as 𝐷𝑖 = 𝐻
𝑘 (𝐷𝑖−1 ∥ data ∥ salt),

where 𝐷0 is the empty string, 𝑘 is the number of iterations, and

𝐻𝑘 indicates 𝐻 (𝐻 (...𝐻 (·))) nested 𝑘 times. Values 𝐷1, 𝐷2, . . . are

computed and concatenated until enough cryptographic material

has been obtained.

To choose the version, the client queries the server and chooses

the implementation contained in the server’s response. Version 2 is

the default and is used by Seafile’s official demo server and, thus,

we describe the behaviour of the client only for that version.

Key Hierarchy. The Seafile storage model consists of repositories,
each associated with its independent cryptographic material. In

particular, rather than having a per-user password, users provide

one password per repository.

During the creation of the repository, the password P is passed

through the KDF to obtain a 32 byte symmetric KEK 𝐾master. Then,

𝐾master is passed through the KDF again to obtain a 16 byte value

IVmaster. A 32 byte symmetric KEK 𝐾
random

is generated and its

encryption under𝐾master and IVmaster is sent to the server. Another

step of key derivation with 𝐾
random

as input yields the DEK 𝐾
file

,

which is used to derive IV
file

.

Prior to encryption, files are split into chunks in order to support

deduplication. The chunking procedure uses content-defined chunk-

ing [17]. Each chunk is encrypted using 𝐾
file

and IV
file

. Similarly

to Icedrive, the reuse of a fixed IV leads to leakage of similarities

between chunk plaintexts: if two chunks begin with the same 16

bytes, their ciphertexts will also share the first blocks.

Seafile provides a way for the user to check whether they have

input the correct password when accessing the repository. The

client uses the KDF, with the ID of the repository concatenated

with the user password as input, yielding a 32 byte value called

the “magic” string, which is sent to the server. Whenever the user

provides a password, the magic string is recomputed and checked

against the server-provided value. If they match, the client proceeds

to decrypt the files in the repository.

Sharing. An entire repository can be shared by sending the pass-

word to another user via an out-of-band channel and then giving

the other user a link to access the repository.

2.2.5 Tresorit. Tresorit was founded in 2011 as a provider mainly

geared towards businesses. Currently, the Swiss Post holds a major-

ity stake in the company. Tresorit has released awhitepaper contain-

ing the technical details of their protocol [2], which we supplement

by inspecting the client source code. The cryptographic design

of Tresorit is remarkably more complex than the other providers,

partially due to the advanced features that it provides, such as

password recovery and admin access for user accounts.

Cryptographic Primitives. Tresorit uses AES-GCM to encrypt

key material with random IVs. File encryption is done using AES
in OpenPGP-style CFBmode [19] in an Encrypt-then-MAC compo-

sition with HMAC-SHA512. For asymmetric encryption, Tresorit

makes use of RSA-OAEP with 4096 bit moduli. For key derivation,

Tresorit uses scrypt, as well as PBKDF2, with a 32 byte salt.

Key Hierarchy. During registration, the user derives a symmetric

KEK 𝐾master from P. The master key 𝐾master is used to encrypt a

freshly generated RSA keypair (sk, pk). Then, pk is used to encrypt

a symmetric key 𝐾
profile

that, in turn, encrypts the so-called user

profile which acts as a container for the keys associated to the user.

Tresorit organizes files in Tresors, which are top-level folders,

each associated with a group key file (GKF). A GKF contains the

keys for the root directories inside the Tresor. The GKF is encrypted

under a KEK𝐾
gkf

. Mirroring the encryption of the user profile,𝐾
gkf

is encrypted using an asymmetric key (sk
gkf
, pk

gkf
), which is in

turn encrypted under a KEK 𝐾group, which is stored in the user

profile and thus will be encrypted under 𝐾
profile

. The GKF contains

a DEK 𝐾root for each top-level folder in the Tresor, which is used

to encrypt folder-related data. Folders are implemented as files

containing the names, URL and key material of all files.

Tresorit uses a KDF in conjunction with both 𝐾
folder

and 𝐾
file

to

derive an AES key and an HMAC key from each key. The derived

keys are subsequently used for encryption and authentication of

folder or file data, respectively. When a folder is changed (e.g. a file

is added), two new salt values are randomly sampled and fresh AES
and HMAC keys are generated from 𝐾

folder
to reencrypt the folder.

End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

The user profile contains a “key history”, which is used to guaran-

tee its authenticity by binding it to the user password. This prevents

attacks in which the server substitutes the user key material with

keys under its control (cfr. Section 3.1.1). We omit details for this

mechanism, as they are not relevant for our analysis.

All asymmetric key material in Tresorit is authenticated using

public-key certificates signed by Tresorit’s own certification au-

thority. The certificates are validated whenever the client requires

public key material from the server.

Tresorit allows company admins to inspect, manage and delete

the accounts of users, by making them store on the server an ad-

ditional encryption of 𝐾
profile

under the admin’s public key pk
A
.

Before this, the user must explicitly acknowledge a pop-up message

that contains the fingerprint of pk
A
, for out-of-band verification.

Sharing. The Tresorit protocol also provides a file sharing func-

tionality. Similar to Sync, we differentiate between link sharing and

permanent sharing. For link sharing, the user generates a 16 byte

client secret, which is then used to derive a key 𝐾
link

, as well as

an identifier, using the KDF. The identifier is used to fetch a link

info entity related to the file, from which the client obtains and

decrypts the file name. Using the same identifier, the client fetches

and decrypts 𝐾
file

, allowing it to decrypt the file content.

Tresors can be shared permanently. To do so, the client retrieves

the public key pk
sh

of the invitee from the server. This public

key is then used to encrypt 𝐾
gkf

of the Tresor to be shared. The

encrypted key material is then sent to the server, who relays it to

the invitee. Each member of a share stores the secret sk
sh

in their

own user profile, allowing them to access the Tresor at will. Note

that the public key pk
sh

is authenticated using a certificate signed

by Tresorit’s CA.

3 ATTACKS
We provide several attacks against all providers, many of which

affect multiple protocols in the same way. In the malicious server

setting, the adversary’s objectives include violating the confidential-

ity of files. However, we believe that the notion of security should

extend beyond just keeping the contents of files confidential. Indeed,

it is commonly understood that metadata such as the file name can

disclose much about the file itself. Additionally, the server may wish

to tamper with the metadata of files or their location, which also

encode semantic information about the files. Lastly, an adversarial

server may wish to inject files in order to confuse the user. All these

attacks diminish the control that the user has of their own data, and

thus have to be protected against when developing a truly secure

E2EE cloud storage system.

We categorize the attacks in four classes: (1) Attacks that allow

the server to learn information about the file contents or names

and the names of directories (Section 3.1), (2) attacks that affect the

integrity of the files, exploiting non-authenticated cipher modes

or unauthenticated chunking of files (Section 3.2), (3) attacks that

tamper with information of files which is unrelated to their content,

including location of files in the storage, file names, and metadata

(Section 3.3), and (4) attacks that allow the server to insert targeted

files which decrypt correctly and look as if they were uploaded by

the user itself (Section 3.4).

We provide an overview of providers and attacks in Table 2.

As of April 2024, all our attacks have been validated and work

against the latest version of each client.

One interesting observation is that no provider reports cryp-

tographic errors to the server, silently crashing on the client side

instead and without automatically retrying operations. This means

that cryptographic oracles are created only when the user directly

interacts with the system. For example, a failed cryptographic oper-

ation might lead to the web client not showing files which it could

not decrypt, in which case the user might try to manually refresh

the page. In this case the server would see two requests for the same

page in a short timespan, from which the adversary might infer that

a cryptographic operation failed. This slow and burdensome flow

hinders attacks that require many queries. For instance, we do not

consider padding oracle attacks on CBC mode to be viable, in the

providers we analyse. At the same time, the theoretical possibility

of such attacks showcases severe weaknesses in the protocol, which

beckons for countermeasures to be taken.

For our analysis, we ignore denial-of-service attacks, since a

provider can always refuse to serve files and it is a challenging

issue to mitigate by cryptographic means.

We also ignore attacks where the provider supplies malicious

JavaScript to the user, as no widespread mechanisms exist for pre-

venting such attacks at the moment. Indeed, a malicious server

can trivially serve a web page that has been modified to leak the

user password, which is an inherent obstacle to secure end-to-end

encryption on the web. While general proposals exist to mitigate

this [25, 28], they lack broad adoption and browser support. As a

provider-specific countermeasure, MEGA has developed a browser

extension that loads code from the extension rather than from the

server. Still, very few users can adequately audit code updates, and

the server can target select users with malicious updates. Addi-

tionally, even diligent code audits may miss ways for the server

to dynamically injecting malicious code. In fact, web applications

often assume that data coming from the browser need not be san-

itized, an assumption which does not hold in the E2EE setting.

Interestingly, this means that the server can try to inject cross-site

scripting (XSS) payloads on the client in order to exfiltrate secret

keys, an uncommon setting for XSS, as the server is usually trusted.

Indeed, we have discovered that Icedrive has a few instances in the

code where the value of innerHTML is set to server-provided data

without sanitization, allowing for XSS.

Nonetheless, our attacks target the cryptographic protocols di-

rectly and, as such, showcase weaknesses on a more fundamental

level. Most of the attacks do not depend on any implementation

details, but rather on the protocol design itself.

3.1 Confidentiality Violation
Weprovide practical attacks against Sync, pCloud and Seafile, which

target the cryptographic material and, as a consequence, violate the

confidentiality of contents or metadata of user files (Section 3.1.1).

In particular, for Sync, a malicious server is able to force the client to

encrypt files using an attacker-controlled key, which then enables

the attacker to decrypt them. For pCloud, our attack leverages the

lack of authentication of the encrypted RSA private key to force

the client to use an attacker-controlled RSA keypair. In addition,

we exploit permanent sharing in Sync and Tresorit, where the lack

Jonas Hofmann & Kien Tuong Truong

Table 2: Summary of the providers analysed, with the attacks and leakages that affect them.

Attack works Attack works under specific conditions Attack does not work – The attack is not applicable

U
n
a
u
th
e
n
ti
c
a
te
d

K
e
y
M

a
te
r
ia
l

U
n
a
u
th
e
n
ti
c
a
te
d

P
u
b
li
c
K
e
y
s

P
r
o
to
c
o
l
D
o
w
n
g
r
a
d
e

L
in
k
-
s
h
a
r
in
g
L
e
a
k
a
g
e

U
n
a
u
th
e
n
ti
c
a
te
d

E
n
c
r
y
p
ti
o
n

U
n
a
u
th
e
n
ti
c
a
te
d

C
h
u
n
k
in
g

T
a
m
p
e
r
in
g
w
it
h
F
il
e
s

a
n
d
F
il
e
N
a
m
e
s

T
a
m
p
e
r
in
g
w
it
h

M

e
ta
d
a
ta

F
il
e
In
je
c
ti
o
n

F
o
ld
e
r
In
je
c
ti
o
n

L
e
a
k
s
P
la
in
te
x
t

In
fo
r
m
a
ti
o
n

L
e
a
k
s
M

e
ta
d
a
ta

L
e
a
k
s
D
ir
e
c
to
r
y

S
tr
u
c
tu
r
e

Sync
*

pCloud
†

– –

Icedrive – –
**

Seafile – –
**

Tresorit

†
Works in the CLI client. Most browsers implement adequate checks for public keys which prevents the attack in that setting.

*
Only as a consequence of folder injection.

**
The adversary can only create a new file by composing chunks of other files, hence the attack is not targeted.

of a public key infrastructure or out-of-band verification allows

an adversary to violate the confidentiality of shared folders (Sec-

tion 3.1.2). For Seafile, we provide a downgrade attack that weakens

the KDF used by the client, giving the server the opportunity to

brute-force the user password (Section 3.1.3). An additional attack

on Sync uses the fact that, when sharing files, the sharing pass-

word is leaked to the server, which trivially violates confidentiality

(Section 3.1.4).

3.1.1 Sync, pCloud: Unauthenticated Key Material. Many providers

use RSA to encrypt cryptographic keys, which are then (indirectly)

used to encrypt files. When using a solid primitive, like RSA-OAEP,

the attacker is unable to directly decrypt the keys. However, RSA-

OAEP provides confidentiality but not authentication. Indeed, since
the server has access to the public key, it can also create valid cipher-

texts of arbitrary messages. In particular, the server can encrypt

arbitrary cryptographic material and substitute it for the user’s.

When the user retrieves the encrypted cryptographic material, they

have no means to verify whether the ciphertext is authentic and

will use the server-chosen cryptographic material to encrypt their

data. The server is then able to decrypt all data that has been up-

loaded after the substitution has taken place. We dub this a key
replacement attack.

We put this attack into concrete terms by explaining how it

affects the design of Sync and pCloud. Recall that, in Sync, the public

RSA key pk is used to encrypt the user’s share key 𝐾
share

, which is

then used as a KEK for all the file keys. Substituting the share key

with a server-controlled share key (for example at registration time)

is sufficient for the server to decrypt all files uploaded from that

point on. Similarly, for pCloud, the server can replace folder keys,

since they are encrypted with the public RSA key of the user and

are not authenticated. The adversary can target a specific folder,

generating new keys𝐾 folder

enc
and𝐾 folder

HMAC
, and encrypting them with

the public key of the user. All files uploaded in that folder from that

point on will have their names leaked to the server.

An additional attack vector is given by the lack of integrity of

the asymmetric keypairs, for example in the case of pCloud. Our

attack here is a novel variation of a key-overwriting attack that

leads the client to use an attacker-chosen public key for encrypting

file keys. For the attack, we exploit the fact that the user’s public

key is unauthenticated and that the private key is encrypted using

an unauthenticated stream cipher mode.

The objective of the attacker is to change the value of the user’s

public key to a value of which it knows the corresponding private

key. Overwriting only the public key is not possible, due to the

consistency check implemented by pCloud between the public and

private key. However, the unauthenticated counter-like ciphermode

used by pCloud to encrypt the private key allows an attacker to

arbitrarily flip bits in the plaintext by flipping the corresponding

bits in the ciphertext. The idea of the attack is that the adversary

can first set the public key to an attacker-controlled value of which

they know the corresponding private key. Afterwards, they can

malleate the encrypted private key to make it consistent with the

public key, in order to pass the check. If the check passes, all file

keys from that point on will be encrypted with an attacker-chosen

public key, violating confidentiality.

Since only the known parts of the private key can be malleated

in a targeted way, there is apparently no way of setting values

for the private attributes. More precisely, private RSA keys are

encoded into DER format [27], depicted in Fig. 4. In this format, the

adversary knows all headers (as they only encode the data type and

length) and the values of 𝑁 and 𝑒 , for a total of 532 bytes. The main

insight of the attack is that this space is sufficient for embedding

the DER encoding of a private key with a small modulus. By setting

the first header to encode the length of the new key, rather than the

old one, the attacker can make the DER decoder ignore the trailing

data and return only the embedded private key.

There are two obstacles to this attack, in practice. The first one

is that many implementations of the Web Cryptography API [26],

which pCloud uses for their web application, implement checks

on the well-formedness of RSA keys. In particular, they check that

𝑝 · 𝑞 = 𝑛, 3 ≤ 𝑒 < 2
64
, 𝑒 · 𝑑 = 1 mod lcm(𝑝 − 1, 𝑞 − 1), and

that the values of 𝑑 mod 𝑝 − 1, 𝑑 mod 𝑞 − 1, and 𝑞−1 mod 𝑝

are correct. The second obstacle is that the RSA key is used to

encrypt file and folder keys, whose encoding consists of 8 bytes

of header, 32 bytes of encryption key and 128 bytes of HMAC

key. The unconventional choice of key length for the MAC key

End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

Header (4) Version (3) . . .

n header (4)

n (512)
. . .

e header (2) e (3)

d header (4)

d, p, q,d mod (p− 1),
d mod (q − 1), q−1 mod p (1812)

Figure 4: The structure of a DER encoded RSA private key,
with the length of each component in bytes. All publicly
known components are in gray.

means that the padding procedure will require a modulus of at least

210 bytes in size.
1
Due to the constrained space, we are unable

to create a key that the web client will accept and that allows

encryption of messages of such size. However, these checks are

implementation-dependent. For example, the Web Cryptography

API does not mandate them and they are, instead, inherited from

the underlying OpenSSL library. Other implementations of RSA-

OAEP might not perform such checks. Indeed, the library used

by the pCloud CLI client does not perform any checks and even

accepts an invalid key of the needed length (with 𝑒 = 𝑑 = 1).

For all the previously described attacks to succeed in practice, the

adversary needs to sidestep client-side caching of the authentic key

material, as otherwise the client will encounter decryption errors.

For example, the server can replace the key material at registration

or during folder creation, so that there will be no data encrypted

with the authentic keys.

3.1.2 Sync and Tresorit: Unauthenticated Public Keys. We now dis-

cuss two attacks related to the lack of authentication of public keys

of other users. This is a difficult problem to solve, as it usually

requires a public-key infrastructure (PKI), out-of-band verification

or similar mechanisms. These are features that are seldom found

in cloud storage systems. In fact, due to the lack of authentica-

tion of public keys in Sync, a malicious server can always replace

public keys supplied to the client when permanently sharing fold-

ers. The client will encrypt the new share key �̃�
share

under an

attacker-controlled key, giving the server access to the shared ma-

terial. Tresorit takes a more considerate approach to public key

authentication, as they deploy certificates to provide authentication

of keys. However, since the certificates are signed using Tresorit’s

own CA, an adversary with access to Tresorit’s servers will be

able to sign arbitrary certificates. Much like Sync, an adversary

may then replace public share keys pk
sh
. Additionally, it may also

try to replace admin keys pk
A
. In particular, replacing pk

A
during

registration would allow the adversary to gain complete control

over a user account. However, in this specific case, the application

shows the fingerprint of the admin key, which mitigates this attack

by allowing out-of-band verification.

3.1.3 Seafile: Protocol Downgrade Attack. Recall that Seafile sup-
ports multiple versions of its protocols and that the client uses

1
210 bytes = 42 (for the OAEP padding) +8 (header) +32 (𝐾enc) +128 (𝐾HMAC) bytes.

server-provided information to choose which version to use. The

server can then downgrade security to the one of the oldest version.

In our attack, the server targets the magic string generated by

the client during the creation of a repository. The server down-

grades the version used by the client to version 0, which uses the

BytesToKey algorithm with an iteration count of 3. This means

that the magic string generated will have, as its leading 20 bytes,

the value SHA1(SHA1(SHA1(IDrepo ∥ P))), where IDrepo is public.

With modern commercial hardware and widely-available software

such as Hashcat [24], it is possible to brute-force over 10
10 SHA1

hashes per second [37], which severely endangers the passwords

of users which use version 0 of the Seafile protocol.

3.1.4 Sync: Link Sharing. As described in Section 2.2.1, Sync users

can share files by creating a share link, which contains a share

password P
link

. However, P
link

is embedded in the link as part

of the path. Whenever the link is clicked, the password is sent

to the server. This automatically violates the confidentiality of

the file when it is shared with a link. Interestingly, this issue was

known to Sync, as shown by the 2015 version of their cryptography

whitepaper.
2
In the whitepaper, the developers explain how the

share password is encoded as part of a URI fragment, which is never

sent to the server. The motivations for this downgrade in security

are opaque to us.

3.2 Tampering with File Data
We present attacks that target the integrity of files. We exploit

the use of unauthenticated cipher modes to modify plaintext for

Icedrive and Seafile (Section 3.2.1). For Seafile and pCloud, we

provide attacks that exploit incorrect or lacking authentication

of the file chunks, allowing to remove or reorder chunks in a file

(Section 3.2.2).

3.2.1 Icedrive and Seafile: Unauthenticated Encryption. Both Icedrive
and Seafile use unauthenticated CBC mode for encrypting file con-

tent, which implies that neither files nor file names are integrity-

protected. As usual with CBC mode, the attacker can violate in-

tegrity by changing the plaintexts in a semi-controlled manner:

the content of any block can be arbitrarily flipped, at the cost of

sacrificing the content of the block before, which will be replaced

by a block of garbage. Seafile uses a fixed IV for the encryption of

all chunks, which prevents the attacker from changing the content

of their first block. Icedrive uses randomized IVs, but the IV is itself

encrypted under a fixed IV, which does not allow the attacker to

control it, preventing a change of the first block.

In Icedrive, the lax padding checks allow for an adversary to

truncate files by removing the trailing blocks of ciphertext.

3.2.2 Seafile, Icedrive, and pCloud: Unauthenticated Chunking. Both
Seafile and pCloud support chunking of files. The encryption for

each chunk is conducted separately, so the chunks are cryptograph-

ically independent. Thus, an authentication mechanism is required

to ensure integrity of the file. In Seafile and Icedrive, no such mech-

anism is present, therefore a malicious server is able to reorder or

remove chunks arbitrarily. In pCloud, the client uses a Merkle tree

of HMAC tags to provide integrity, as described in 2.2.2. We show

2
This whitepaper has since been removed from the website and replaced with a

different document.

Jonas Hofmann & Kien Tuong Truong

that this construction is insecure. Recall, first, that pCloud sends

the entire Merkle tree to the server. Second, note that, by construc-

tion, any subtree is also a valid and authenticated Merkle tree. This

means that the attacker, rather than serving the entire file to the

client, can serve only a subtree, along with all sectors which are

authenticated by that subtree, which the client will decrypt without

raising errors. The consequence is that the server can decide to

remove entire sectors from the user’s data.

3.3 Tampering with Directory Structure and
Metadata

We present a series of attacks that alter the directory structure for

all providers under consideration. We present attacks against the

binding between files contents, names and paths in Sync, pCloud,

Icedrive and Seafile, enabling a server to exchange the names of

two files and, for Icedrive, we showcase an attack that allows the

server to truncate file names, exploiting the lack of authentication

in the encryption (Section 3.3.1). Then, we exploit the fact that

metadata is not integrity-protected in any provider, which allows

an adversary to manipulate the metadata of uploaded files, such as

time of creation, file type and size (Section 3.3.2).

3.3.1 Sync, pCloud, Icedrive, Seafile: Tampering with File Names
and Locations. Two of the most important pieces of metadata infor-

mation in cloud storage are, arguably, file names and file locations.

Many of the providers we analysed do not authenticate the location

of files, allowing an adversary to trivially move them within the

storage. File names are often encrypted, but are rarely authenticated

or bound to the file content itself. As the file name and location

carry relevant semantic information about the file, this allows for a

malicious server to mislead users on the contents of files, without

tampering with them.

In Sync, files are uniquely identified by a server-chosen sync_id.
Ideally, the data, name and path of the files should be bound to this

identifier, so that the contents of two files cannot be swapped or

moved. However, for Sync, no such binding is present, allowing the

server to move files anywhere in the storage and to swap the names

of files. In pCloud, file names are bound to their parent folder, as they

are encrypted using the folder key 𝐾
folder

, but they are not bound

to the file contents. This means that (1) file names can be swapped

within the same folder, and (2) file contents can be placed anywhere

in the storage and associated to any existing file name. Note that

the adversary cannot “move” an encrypted file name outside of

its original folder, since it is encrypted with a folder-dependent

key. However, the attacker can still apply our key replacement

attack on folder keys (Section 3.1.1) to be able to inject new file

names. In Icedrive, all files and file names are encrypted using the

same key 𝐾master, without any cryptographic mechanism to bind

them together and to the file location. This allows the adversary to

change location of files and swap file names. Furthermore, due to

the usage of CBC mode, the adversary can truncate file names with

the granularity of one block. Exploiting the malleability of CBC

mode is possible, but hard in practice due to the requirement that

file names should consist of only UTF-8 characters. Still, this must

be seen as a flawed choice of primitive by the protocol designers.

Seafile relinquishes complete control of the directory structure to

the server, once again enabling the server to move files within a

repository. File names are not encrypted nor authenticated and can

be changed at the server’s discretion.

3.3.2 All: Tampering with Additional Metadata. In all the providers

we analyse, some metadata is unencrypted and unauthenticated

and can be arbitrarily manipulated by the server. This metadata

includes file size, type, and time of origin. Crucially, for shared files

in Sync and Tresorit, it contains information about who created

the file or folder. This means that the server can make it appear as

if a file has been created by a different user, which is particularly

relevant for shared folders. Additionally, the server can make it

appear as if the user had shared a folder with any arbitrary user.

For example, a malicious server could frame an employee by adding

a company competitor to the list of people who have access to a

confidential folder and accuse the employee of industrial espionage.

3.4 Targeted File Injection
We provide attacks against Sync and pCloud that allow a malicious

server to place files in a user’s directory. Specifically, the goal of the

adversary is to insert a chosen file into the user’s storage, in a way

that is indistinguishable from a file that the user uploaded. As long

as an injected file is indistinguishable from an honestly uploaded

file, at least from the user interface, such an attack could be used

to place incriminating material in the user’s storage, allowing for

blackmailing. In Sync, an attacker can inject entire folders into

the user’s storage (Section 3.4.2). In pCloud, an adversary can add

individual files in the storage of the user (Section 3.4.1).

3.4.1 PCloud: File Insertion and Substitution. In pCloud, a mali-

cious server is able to insert arbitrary files into the user’s storage

by using the fact that the user’s public key pk is also known to the

server. As all file keys in pCloud are encrypted using pk and are not

authenticated, the server can generate new file keys (𝐾enc

file
, 𝐾HMAC

file
),

encrypt a chosen file with them and add the file to an arbitrary

folder. Creating a valid encrypted file name proves to be harder,

since the file names are encrypted using the folder key. However,

we can build upon the observations made in Section 3.3.1 and use an

encrypted file name belonging to a different file, exploiting the lack

of binding between file contents and names. In fact, a direct conse-

quence of the combination of these two attacks is that the pCloud

server can substitute an existing file’s contents with arbitrary data.

3.4.2 Sync, pCloud, Seafile: Folder Injection Attack. In Section 3.1.1,

we have shown that a malicious Sync server can swap the user’s

share key with an adversary-chosen key, which also allows an

attacker to inject arbitrary files in the storage. We now show an

additional attack that can still inject a folder in the user’s storage

without needing key replacement.

The intuition is that the server can simulate the process of per-

manently sharing a folder, as if it originated from an honest user

and was accepted by the victim. This requires the adversary to

sample a new 𝐾
share

, using it to encrypt the folder to be injected,

and encrypt 𝐾
share

with the user’s public key. Whenever the user

requests the contents of the root folder, the server includes the new

shared folder. In some cases, this can already constitute an issue,

since it makes it appear as if the user accepted a permanent share,

possibly one which contains illegal or copyrighted material. To

End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

make the attack more severe, the server can also build upon the at-

tack described in Section 3.3.2 to modify the metadata of the folder

and make it appear in the user interface as if the user uploaded the

folder themselves. This aesthetic change makes the injected folder

indistinguishable from a honestly uploaded folder when observing

the user interface. We note that the underlying code will treat it as
a shared folder, but a human observing the client will not be able

to notice such difference.

For pCloud, the folder injection follows the same mechanism as

the file insertion attack: the user’s public key pk is known to the

server, allowing the server to encrypt a folder key 𝐾
folder

and add

the folder to the user’s storage.

For Seafile, this attack is more trivial, since the server is in full

control of the directory structure, which is not cryptographically

protected.

4 DISCUSSION
4.1 Common Failure Patterns
The analyses focused on MEGA and Nextcloud have highlighted

severe issues in the design of those two specific systems. It is then

natural to ask ourselves: how widespread are these failure modes in
the larger ecosystem? Through the lens of our investigation, it is

clear that these failure modes are not unique to MEGA or Nextcloud.

Indeed, our attacks highlight a range of issues that are spread across

the broader ecosystem of encrypted cloud storage. While we do

recognise that there may be E2EE cloud storage providers outside

of our analysis that do not suffer from these vulnerabilities, we also

note that the services that we did analyse are major providers in

the space. In fact, we observe how products that were developed

independently happen to suffer from the same vulnerabilities.

We now highlight the common failure patterns that have affected

the five providers in our work in the hope that these anti-patterns

can act as advice for the practitioners who wish to develop secure

E2EE cloud storage. We also provide general principles that can

help with mitigation, though we refrain from giving the specifics.

This is because each provider has specific engineering constraints,

which might make any concrete advice inapplicable to them.

Misuse of Cryptographic Primitives. The first evident problem
with many providers is the misuse of cryptographic primitives. The

protocols we analysed oftenmake use of primitives with insufficient

security guarantees. For example, CBC mode provides IND-CPA

security for Icedrive and Seafile but not integrity; RSA encryption

with OEAP padding, a solid choice of primitive for public-key en-

cryption, provides IND-CCA security but not authentication. In

other cases, primitives are used incorrectly, as in Seafile and Icedrive,

which reuse the same key-IV pair for multiple encryptions.

This problem can only be mitigated by gaining a better under-

standing of the required security properties. For the prior examples,

a careful design process could have pointed out that file data should

be encrypted using an authenticated encryption primitive and that

RSA ciphertexts need to be authenticated. Such a process, however,

requires (possibly expensive) cryptographic expertise to which

many companies might not have access. At the same time, compa-

nies making strong marketing claims should be able to hold up to

cryptanalysis as part of their responsibility towards clients.

Leaking Data andMetadata. The confidentiality of file contents is
the primary concern of any E2EE cloud storage, and most providers

tackle the problem by encrypting the data with a key unknown

to the server. As discussed, this must be done using the correct

primitives, lest we leak patterns in the file data, as in Seafile or

Icedrive. However, this is insufficient: even when correctly using

solid primitives to encrypt files, much information can be learnt

from their metadata.

The former General Counsel for the NSA is quoted as saying:

“Metadata absolutely tells you everything about somebody’s life. If

you have enough metadata, you don’t really need content”. Meta-

data has been the focus of many works in the literature [12, 13, 36,

41, 45], with proposals that aim to improve leakage resilience in

cloud storage systems. Unfortunately, this concern has not spread

to the broader developer community: all analysed providers leak

at least the directory structure, if not the names of folders or files

themselves. File types and file lengths, that many of the providers

leak, can be often used to identify its contents [41]. It is clear that

the current level of leakage leaves much to be desired.

A first mitigation is to encrypt all metadata and prevent the

server from learning the structure of the user’s storage. More specif-

ically, the client should create a special file which contains the

metadata of the entire storage, including the directory structure

and the names of files and directories. This file can be stored en-

crypted on the server, so that it can be retrieved every time the user

wants to access their files, and updated whenever a file or folder

is created, updated or deleted. Files can then be associated with a

directory-independent identifier, which does not reveal the direc-

tory structure to the server anymore. Due to access patterns, this

may prove insufficient [12, 13, 36, 45], but all current mitigations for

this problem have unsatisfactory overheads or strong assumptions

(e.g. non-colluding servers) that often preclude their usage in large-

scale systems. Still, not making metadata immediately available

to the server protects against snapshot adversaries and forces an

attacker to persistently observe user interactions with the server

in order to learn their patterns.

Lack of Integrity in the Storage. Even in cases where confiden-

tiality is ensured for both data and metadata, providers must also

guarantee their integrity. As a motivating example, Böek has shown

that using CFB mode for encryption in OwnCloud could have al-

lowed an attacker to inject a small amount of arbitrary code in

an executable [10]. If the attacker knows the entire content of the

executable, this also allows the injection of an arbitrary amount

of malicious code. As another example, not checking the integrity

of file names and paths could allow a malicious server to swap pa-

tients’ medical data, leading to misdiagnoses. Further, an adversary

that can inject arbitrary folders and files can mislead the user about

the nature of the contents of their storage.

While this can happen in non-encrypted cloud storage as well,

the fact that users manage their own cryptographic keys can be seen

to imply that they have full control of the uploaded data. Indeed,

this is the reasoning under which MEGA was designed to be end-to-

end encrypted [20], since the provider could not be then held liable

for copyrighted files uploaded by the users. In the presence of a

vulnerability affecting storage integrity, this can imply two things.

If the vulnerability is not publicly known, a malicious server can

Jonas Hofmann & Kien Tuong Truong

inject compromising material and report the user to the authorities,

arguing that only the user could have uploaded it. On the other

hand, if the vulnerability is known and the provider has deemed it a

non-issue, then this allows for a variation of a Trojan horse defence
where a criminal, who uses the storage to share illegal material, can

claim that the files have been injected by the provider in order to

frame them. Both of these results are, arguably, undesirable, which

suggests that integrity cannot be treated as secondary with respect

to confidentiality.

Mitigations must be applied at multiple levels. The usage of

authenticated modes of encryption provides integrity at the most

granular level. If files are chunked, the entire structure should

be authenticated, for example, by using Merkle trees, preventing

truncation and chunk reordering. Finally, file names and paths

should be bound to the file contents. Since files are usually assigned

unique IDs, an option is to include the ID as associated data when

encrypting file data, metadata and paths with an AEAD scheme.

Missing Authentication for Public Keys. In the providers we have

analysed, files are shared via out-of-band sharing of a symmetric

key or by encrypting key material under the public key of the

recipient. Obtaining authentic public keys is a well-known problem

commonly resolved via a public key infrastructure (cfr. TLS) or by

out-of-band communication (cfr. Signal’s fingerprint comparison

feature).We observe how none of the services that provide a sharing

capability with public keys, namely Sync and Tresorit, provide an

independent and secure mechanism to authenticate public keys.

In particular, Sync provides no mechanism at all, while Tresorit

provides an internal CA, which, under the assumption that Tresorit

could be compromised, provides no security.

Showing a fingerprint to the user before sharing would enable

detection of server misbehaviour without needing more profound

changes to the cryptographic protocols, at the cost of a less intu-

itive user experience. Another more user-friendly alternative is to

deploy a key transparency protocol, similar to the ones deployed by

Whatsapp [30] and ProtonMail [46]. This would allow for public au-

ditability of the mapping between users and public keys, preventing

a server from serving arbitrary public keys to users.

4.2 Deploying Mitigations at Scale
Even after mitigations have been developed, deploying them re-

mains an arduous task that must take into account backwards

compatibility, especially considering native clients that need to be

manually updated. Furthermore, re-encryption of files (e.g. when

the provider wants to change the encryption scheme) can only be

done in collaboration with the user. In other words, each user would

have to download all their data, decrypt it, re-encrypt it under the

new protocol, and upload it to the server again. Backendal et al.

estimate that MEGA’s 1000 petabytes of data would have required

more than half a year at their peak bandwidth to re-encrypt [8],

without accounting for the massive load on their infrastructure
3
. If

complete mitigations were to be deployed for all the providers we

analysed, we would expect similar hurdles.

Another approach is to opportunistically re-encrypt files as the

user accesses them. In this case, the main issue would be preventing

3
In fact, at the time of writing, MEGA has only deployed short-term remediations.

a malicious server from downgrading the protocol version by serv-

ing the original ciphertext, even after the file has been re-encrypted.

This requires the client to keep track of the files that have already

been re-encrypted and to decrypt those files exclusively under the

new protocol. However, requiring the client to keep a long-term

state is a very strong assumption, especially considering the preva-

lence of web-based clients.

Deploying mitigations is even more troublesome for self-hosted

applications like Seafile, as not only the clients but also all server

instances need to be updated. For Seafile, this makes the develop-

ers less inclined to update the protocol, as they believe it could

negatively affect user experience [33].

4.3 Towards Secure E2EE Cloud Storage
The challenges in mitigation efforts emphasise the importance of

having provable security guarantees as early as possible, to avoid

the continuous cycle of discovering and then patching vulnerabil-

ities. Such guarantees can only be provided if the company has

access to cryptographic expertise, which is rare and expensive. This

inevitably confines secure E2EE cloud storage to well-financed com-

panies that have resources to hire cryptographers to design and

analyse their protocols, raising a barrier to entry into the ecosystem.

Arguably, many of the providers in our investigation, as well

as MEGA and NextCloud, did not have access to cryptographic

expertise when developing their protocol. This hypothesis is cor-

roborated by the usage of weak primitives and the existence of

trivial vulnerabilities in their systems. The question then becomes:

how can the cryptographic community better support companies,

especially those which are less financially equipped, in developing

cryptographic applications?

From our analysis, it’s clear that some cryptographic know-how
has reached the community of developers: almost always, pass-

words are hashed using an appropriate KDF prior to usage and

sometimes solid primitives such as RSA-OAEP and AES-GCM are

used. Nonetheless, we have seen that vulnerabilities appear when

(solid) primitives are composed to obtain protocols. Paterson et

al. [42] have argued for a “don’t roll your own cryptographic proto-

col” mantra, when pre-existing designs can be used. However, for

E2EE cloud storage, there are no standardised and open designs to

be implemented. It should then become a collective task and excit-

ing future work for the cryptographic community to create such a

standard and to prove it secure. The resulting standard should be

a collaboration between cryptographers, practitioners, and imple-

menters, as advocated by Backendal et al. [7], in order to take into

account the engineering constraints that exist in the real world.

5 CONCLUSIONS
We have conducted an analysis of the E2EE cloud storage landscape,

focussing on five popular providers as a case study and investigat-

ing their cryptographic design. Our work unveiled ten classes of

attacks against these providers targeting the confidentiality of files,

the integrity of file data, file metadata, and the directory structure,

as well as attacks allowing the injection of files into the user’s direc-

tory. Our findings challenge the marketing claims made by some

providers and, in several instances, compromise their E2EE guar-

antees. Nonetheless, not all protocols are created equal; Tresorit’s

End-to-End Encrypted Cloud Storage in the Wild:
A Broken Ecosystem

design is mostly unaffected by our attacks due to a comparably

more thoughtful design and an appropriate choice of cryptographic

primitives. However, the absence of formal security analyses, the

lack of freely-available source code, and the complex nature of the

cryptographic design, present significant barriers to independent

security evaluations.

We pointed out recurring patterns of cryptographic design fail-

ures replicated by different providers independently of each other,

highlighting how non-trivial the challenges are in this setting, and

how they require solid theoretical foundations to be tackled.

We concluded by providing possible mitigations for each of the

anti-patterns. While our list of vulnerabilities and mitigations is

by no means exhaustive, we believe that it can shed a light on the

technical challenges faced by developers in the field.

The vulnerabilities pervading E2EE cloud storage highlight a

critical blind spot in our grasp of the field. From an academic stand-

point, cloud storage might seem like a largely resolved issue, marred

only by a few problematic instances such as MEGA and NextCloud.

However, our research demonstrates that the practical reality is

quite different, and that the ecosystem is fundamentally flawed. Our

findings strongly suggest that, in its current state, the ecosystem

of E2EE cloud storage is largely broken and requires significant

reevaluation of its foundations.

ACKNOWLEDGEMENTS
We thank Kenneth G. Paterson for helpful discussions. Jonas Hof-

mann is supported in parts by the German Federal Ministry of

Education and Research and the Hessen State Ministry for Higher

Education, Research and the Arts within their joint support of the

National Research Center for Applied Cybersecurity ATHENE.

REFERENCES
[1] Tresorit AG. 2024. End-to-End Encrypted Storage for Businesses | Tresorit. https:

//tresorit.com/.

[2] Tresorit AG. 2024. Tresorit - Encryption Whitepaper. https://tresorit.com/

resources.

[3] Martin R. Albrecht, Matilda Backendal, Daniele Coppola, and Kenneth G. Pa-

terson. 2024. Share with Care: Breaking E2EE in Nextcloud. Cryptology ePrint

Archive, Paper 2024/546. https://eprint.iacr.org/2024/546 https://eprint.iacr.org/

2024/546.

[4] Martin R. Albrecht, Miro Haller, Lenka Mareková, and Kenneth G. Paterson. 2023.

Caveat Implementor! Key Recovery Attacks onMEGA. InAdvances in Cryptology
– EUROCRYPT 2023, Part V (Lecture Notes in Computer Science, Vol. 14008), Carmit

Hazay and Martijn Stam (Eds.). Springer, Cham, Switzerland, Lyon, France, 190–

218. https://doi.org/10.1007/978-3-031-30589-4_7

[5] OpenSSL Project Authors. 2024. EVP_BytesToKey. https://www.openssl.org/

docs/man3.1/man3/EVP_BytesToKey.html.

[6] Matilda Backendal, Hannah Davis, Felix Günther, Miro Haller, and Kenneth G.

Paterson. 2024. A Formal Treatment of End-to-End Encrypted Cloud Storage.

Springer-Verlag.

[7] Matilda Backendal, MiroHaller, and Kenny Paterson. 2024. End-to-End Encrypted

Cloud Storage. IEEE Security & Privacy 22, 2 (2024), 69–74. https://doi.org/10.

1109/MSEC.2024.3352788

[8] Matilda Backendal, Miro Haller, and Kenneth G. Paterson. 2023. MEGA:Malleable

Encryption Goes Awry. In 2023 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, San Francisco, CA, USA, 146–163. https://doi.org/10.

1109/SP46215.2023.10179290

[9] Mihir Bellare, Anand Desai, Eric Jokipii, and Phillip Rogaway. 1997. A Concrete

Security Treatment of Symmetric Encryption. In 38th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society Press, Miami Beach,

Florida, 394–403. https://doi.org/10.1109/SFCS.1997.646128

[10] Hanno Böck. 2016. Pwncloud – bad crypto in the Owncloud encryption
module. https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-

Owncloud-encryption-module.html.

[11] Lara Bruseghini, Daniel Huigens, and Kenneth G. Paterson. 2022. Victory by KO:

Attacking OpenPGP Using Key Overwriting. In ACM CCS 2022: 29th Conference

on Computer and Communications Security, Heng Yin, Angelos Stavrou, Cas

Cremers, and Elaine Shi (Eds.). ACM Press, Los Angeles, CA, USA, 411–423.

https://doi.org/10.1145/3548606.3559363

[12] Weikeng Chen, Thang Hoang, Jorge Guajardo, and Attila A. Yavuz. 2022. Tita-

nium: A Metadata-Hiding File-Sharing System with Malicious Security. In 29th
Annual Network and Distributed System Security Symposium, NDSS 2022, San
Diego, California, USA, April 24-28, 2022. The Internet Society. https://www.ndss-

symposium.org/ndss-paper/auto-draft-234/

[13] Weikeng Chen and Raluca Ada Popa. 2020. Metal: A Metadata-Hiding File-

Sharing System. In ISOC Network and Distributed System Security Symposium –
NDSS 2020. The Internet Society, San Diego, CA, USA. https://doi.org/10.14722/

ndss.2020.24095

[14] Larry Dignan. 2017. Google plans to leverage G Drive for broader
enterprise footprint, team management and collaboration. https:

//www.zdnet.com/article/google-plans-to-leverage-g-drive-for-broader-

enterprise-footprint-team-management-and-collaboration/.

[15] Dropbox, Inc. [n. d.]. FORM S-1 REGISTRATION STATEMENT. https://www.sec.

gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm#toc.

[16] Dropbox, Inc. 2023. Third Quarter 2023 Financial Results. https://investors.

dropbox.com/static-files/f2b4e840-27cf-41ab-8fb9-ed4d529a68fa.

[17] Cezary Dubnicki, Krzysztof Lichota, Erik Kruus, and Cristian Ungureanu. 2026.

Methods and systems for data management using multiple selection criteria .

https://patents.google.com/patent/US7844581B2/en.

[18] ef4. [n. d.]. Encrypted libraries leak lots of information. https://github.com/

haiwen/seafile/issues/350.

[19] Hal Finney, Lutz Donnerhacke, Jon Callas, Rodney L. Thayer, and Daphne Shaw.

2007. OpenPGP Message Format. RFC 4880. https://doi.org/10.17487/RFC4880

[20] Charles Graeber. 2024. Megaupload Is Dead. Long Live Mega! https://www.wired.

com/2012/10/megaupload-mega/.

[21] haiwen. [n. d.]. Security Questions. https://manual.seafile.com/security/security_

features/#encrypted-library.

[22] haiwen. 2024. haiwen/seafile - High performance file syncing and sharing, with also
Markdown WYSIWYG editing, Wiki, file label and other knowledge management
features. https://github.com/haiwen/seafile.

[23] Miro Haller. 2022. Cloud Storage Systems: From Bad Practice to Practical At-

tacks. (3 2022). https://www.research-collection.ethz.ch/bitstream/handle/20.

500.11850/555337/Msc_thesis_Miro_Haller1.pdf.

[24] Hashcat. 2024. hashcat - advanced password recovery. https://hashcat.net/

hashcat/.

[25] Daniel Huigens. 2023. Source Code Transparency. https://github.com/twiss/

source-code-transparency/blob/main/explainer.md.

[26] Daniel Huigens, Mark Watson, and Ryan Sleevi. 2023. Web Cryptography API.
https://w3c.github.io/webcrypto.

[27] ISO/IEC 8825-1:2021(en) 2021. ASN.1 encoding rules - Part 1: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding
Rules (DER). Standard. International Organization for Standardization, Geneva,

CH.

[28] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun.

2016. Verena: End-to-End Integrity Protection for Web Applications. In 2016
IEEE Symposium on Security and Privacy. IEEE Computer Society Press, San Jose,

CA, USA, 895–913. https://doi.org/10.1109/SP.2016.58

[29] Vlastimil Klima and Tomas Rosa. 2002. Attack on Private Signature Keys of the

OpenPGP Format, PGP(TM) Programs and Other Applications Compatible with

OpenPGP. Cryptology ePrint Archive, Report 2002/076. https://eprint.iacr.org/

2002/076

[30] Sean Lawlor and Kevin Lewi. 2024. Deploying key transparency at WhatsApp.
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/.

[31] ID Cloud Services LTD. 2024. Icedrive - Secure Encrypted Cloud Storage. https:
//icedrive.net.

[32] ID Cloud Services LTD. 2024. Icedrive - Secure Encrypted Cloud Storage. https:
//icedrive.net/encrypted-cloud-storage.

[33] Jonathan Xu (Seafile Ltd.). 2024. Personal communication.

[34] Seafile Ltd. 2024. About - Seafile. https://www.seafile.com/en/about/.

[35] Seafile Ltd. 2024. Seafile - Open Source File Sync and Share Software. https:

//www.seafile.com/en/home/.

[36] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2015.

Privacy and Access Control for Outsourced Personal Records. In 2015 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, San Jose, CA,

USA, 341–358. https://doi.org/10.1109/SP.2015.28

[37] Phoronix Media. 2024. Hashcat Benchmark - OpenBenchmark-
ing.org. https://openbenchmarking.org/test/pts/hashcat&eval=

306f31f896ee6afac758df6db7589b6a2a232723#metrics.

[38] MEGA. 2024. MEGA. https://mega.io/.

[39] Nextcloud GmbH. 2018. Nextcloud grew customer base 7x, added over 6.6 million
lines of code and doubled its team in 2017. https://nextcloud.com/blog/nextcloud-

grew-customer-base-7x-added-over-6-6-million-lines-of-code-and-doubled-

its-team-in-2017/.

https://tresorit.com/
https://tresorit.com/
https://tresorit.com/resources
https://tresorit.com/resources
https://eprint.iacr.org/2024/546
https://eprint.iacr.org/2024/546
https://eprint.iacr.org/2024/546
https://doi.org/10.1007/978-3-031-30589-4_7
https://www.openssl.org/docs/man3.1/man3/EVP_BytesToKey.html
https://www.openssl.org/docs/man3.1/man3/EVP_BytesToKey.html
https://doi.org/10.1109/MSEC.2024.3352788
https://doi.org/10.1109/MSEC.2024.3352788
https://doi.org/10.1109/SP46215.2023.10179290
https://doi.org/10.1109/SP46215.2023.10179290
https://doi.org/10.1109/SFCS.1997.646128
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://blog.hboeck.de/archives/880-Pwncloud-bad-crypto-in-the-Owncloud-encryption-module.html
https://doi.org/10.1145/3548606.3559363
https://www.ndss-symposium.org/ndss-paper/auto-draft-234/
https://www.ndss-symposium.org/ndss-paper/auto-draft-234/
https://doi.org/10.14722/ndss.2020.24095
https://doi.org/10.14722/ndss.2020.24095
https://www.zdnet.com/article/google-plans-to-leverage-g-drive-for-broader-enterprise-footprint-team-management-and-collaboration/
https://www.zdnet.com/article/google-plans-to-leverage-g-drive-for-broader-enterprise-footprint-team-management-and-collaboration/
https://www.zdnet.com/article/google-plans-to-leverage-g-drive-for-broader-enterprise-footprint-team-management-and-collaboration/
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm#toc
https://www.sec.gov/Archives/edgar/data/1467623/000119312518055809/d451946ds1.htm#toc
https://investors.dropbox.com/static-files/f2b4e840-27cf-41ab-8fb9-ed4d529a68fa
https://investors.dropbox.com/static-files/f2b4e840-27cf-41ab-8fb9-ed4d529a68fa
https://patents.google.com/patent/US7844581B2/en
https://github.com/haiwen/seafile/issues/350
https://github.com/haiwen/seafile/issues/350
https://doi.org/10.17487/RFC4880
https://www.wired.com/2012/10/megaupload-mega/
https://www.wired.com/2012/10/megaupload-mega/
https://manual.seafile.com/security/security_features/#encrypted-library
https://manual.seafile.com/security/security_features/#encrypted-library
https://github.com/haiwen/seafile
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/555337/Msc_thesis_Miro_Haller1.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/555337/Msc_thesis_Miro_Haller1.pdf
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://github.com/twiss/source-code-transparency/blob/main/explainer.md
https://github.com/twiss/source-code-transparency/blob/main/explainer.md
https://w3c.github.io/webcrypto
https://doi.org/10.1109/SP.2016.58
https://eprint.iacr.org/2002/076
https://eprint.iacr.org/2002/076
https://engineering.fb.com/2023/04/13/security/whatsapp-key-transparency/
https://icedrive.net
https://icedrive.net
https://icedrive.net/encrypted-cloud-storage
https://icedrive.net/encrypted-cloud-storage
https://www.seafile.com/en/about/
https://www.seafile.com/en/home/
https://www.seafile.com/en/home/
https://doi.org/10.1109/SP.2015.28
https://openbenchmarking.org/test/pts/hashcat&eval=306f31f896ee6afac758df6db7589b6a2a232723#metrics
https://openbenchmarking.org/test/pts/hashcat&eval=306f31f896ee6afac758df6db7589b6a2a232723#metrics
https://mega.io/
https://nextcloud.com/blog/nextcloud-grew-customer-base-7x-added-over-6-6-million-lines-of-code-and-doubled-its-team-in-2017/
https://nextcloud.com/blog/nextcloud-grew-customer-base-7x-added-over-6-6-million-lines-of-code-and-doubled-its-team-in-2017/
https://nextcloud.com/blog/nextcloud-grew-customer-base-7x-added-over-6-6-million-lines-of-code-and-doubled-its-team-in-2017/

Jonas Hofmann & Kien Tuong Truong

[40] Kevin "Kenny" Niehage. 2020. Cryptographic Vulnerabilities and Other Short-

comings of the Nextcloud Server Side Encryption as implemented by the

Default Encryption Module. Cryptology ePrint Archive, Paper 2020/1439.

https://eprint.iacr.org/2020/1439 https://eprint.iacr.org/2020/1439.

[41] Kirill Nikitin, Ludovic Barman, Wouter Lueks, Matthew Underwood, Jean-Pierre

Hubaux, and Bryan Ford. 2019. Reducing Metadata Leakage from Encrypted Files

and Communication with PURBs. Proceedings on Privacy Enhancing Technologies
2019, 4 (Oct. 2019), 6–33. https://doi.org/10.2478/popets-2019-0056

[42] Kenneth G. Paterson, Matteo Scarlata, and Kien Tuong Truong. 2023. Three

Lessons From Threema: Analysis of a Secure Messenger. In 32nd USENIX Security
Symposium (USENIX Security 23). USENIX Association, Anaheim, CA, 1289–1306.

https://www.usenix.org/conference/usenixsecurity23/presentation/paterson

[43] pCloud International AG. 2024. pCloud - Europe’s most secure cloud storage.
https://www.pcloud.com/eu.

[44] pCloud International AG. 2024. pClout - About us. https://www.pcloud.com/

company/about.html.

[45] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM Revisited. In Advances
in Cryptology – CRYPTO 2010 (Lecture Notes in Computer Science, Vol. 6223), Tal
Rabin (Ed.). Springer, Berlin, Heidelberg, Germany, Santa Barbara, CA, USA,

502–519. https://doi.org/10.1007/978-3-642-14623-7_27

[46] Proton AG. 2024. What is Key Transparency? | Proton. https://proton.me/support/

key-transparency.

[47] Keegan Ryan and Nadia Heninger. 2022. Cryptanalyzing MEGA in Six Queries.

Cryptology ePrint Archive, Report 2022/914. https://eprint.iacr.org/2022/914

[48] Inc. Sync.com. 2024. Sync | About Sync. https://www.sync.com/about/.

[49] Inc. Sync.com. 2024. Sync | Secure Cloud Storage, File Sharing and Document
Collaboration. https://www.sync.com/.

[50] Nikos Virvilis, Stelios Dritsas, and Dimitris Gritzalis. 2011. Secure Cloud Storage:

Available Infrastructures and Architectures Review and Evaluation. In Trust,
Privacy and Security in Digital Business - 8th International Conference, TrustBus
2011, Toulouse, France, August 29 - September 2, 2011. Proceedings (Lecture Notes in
Computer Science, Vol. 6863), Steven Furnell, Costas Lambrinoudakis, and Günther

Pernul (Eds.). Springer, 74–85. https://doi.org/10.1007/978-3-642-22890-2_7

A PROVIDER FOLDER STRUCTURE
We provide additional information about the protocol design of

each provider, namely how the files and folders are structured and

addressed for each provider. This information complements the

protocol descriptions in Section 2.

A.1 Sync
In Sync, every file or folder is associated with a sync_id, a unique
identifier which allows the client to fetch them from the server.

The server is required to know the entire file structure, as it needs

to return a list of sync_ids whenever a client queries a directory.
The structure is not cryptographically protected, which allows the

server to control the file structure at will.

A.2 pCloud
pCloud uses server-chosen folder IDs and file IDs to identify re-

sources. Each folder is associated with a list of all IDs of contained

files and subfolders. Even though the names are encrypted, this

means that the server has knowledge of the entire folder structure.

A.3 Icedrive
The directory structure of the storage is known to the server, though

the names of files and folders are encrypted. The client can ask

the server for the contents of any folder (through a unique ID),

to which the server will reply with a list of files and subfolders.

There is no mechanism for the client to check the veracity of the

information given by the server, which means that the client trusts

the server on the directory structure.

A.4 Seafile
The server has full control of the folder structure, as it sees all

directories, file names, and the chunks which compose each file.

Seafile does not provide a cryptographic mechanism to verify the

integrity of the folder structure. In particular, we remark that file

names are leaked to the server, an issue which is known to the

developers and that they are not planning to remediate [18].

A.5 Tresorit
Tresorit file URLs always contain the encrypted name of the parent

directory. The server is therefore aware of the file structure and

also of the plaintext names of all Tresors, as these are not encrypted.

The server can also infer some of the file types depending on the

thumbnails the client fetches for the frontend, e.g. if only one file

type is fetched after opening a folder. By storing metadata within

the encrypted file of the parent directory, the location and name of

a file is bound to the correct folder and cannot be tampered with.

https://eprint.iacr.org/2020/1439
https://eprint.iacr.org/2020/1439
https://doi.org/10.2478/popets-2019-0056
https://www.usenix.org/conference/usenixsecurity23/presentation/paterson
https://www.pcloud.com/eu
https://www.pcloud.com/company/about.html
https://www.pcloud.com/company/about.html
https://doi.org/10.1007/978-3-642-14623-7_27
https://proton.me/support/key-transparency
https://proton.me/support/key-transparency
https://eprint.iacr.org/2022/914
https://www.sync.com/about/
https://www.sync.com/
https://doi.org/10.1007/978-3-642-22890-2_7

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Ethical Considerations
	1.4 Paper Structure

	2 Description of the Providers
	2.1 Cryptographic Primitives and Notation
	2.2 Description of the Protocols

	3 Attacks
	3.1 Confidentiality Violation
	3.2 Tampering with File Data
	3.3 Tampering with Directory Structure and Metadata
	3.4 Targeted File Injection

	4 Discussion
	4.1 Common Failure Patterns
	4.2 Deploying Mitigations at Scale
	4.3 Towards Secure E2EE Cloud Storage

	5 Conclusions
	References
	A Provider Folder Structure
	A.1 Sync
	A.2 pCloud
	A.3 Icedrive
	A.4 Seafile
	A.5 Tresorit

