
Threat Research
Highly Evasive Attacker Leverages SolarWinds
Supply Chain to Compromise Multiple Global
Victims With SUNBURST Backdoor
December 13, 2020 |	by	FireEye
FIREEYE	EVASION	SUPPLY	CHAIN	
Executive Summary

• We	have	discovered	a	global	intrusion	campaign.	We	are	tracking	the	actors	behind	this	
campaign	as	UNC2452.	

• FireEye	discovered	a	supply	chain	attack	trojanizing	SolarWinds	Orion	business	software	
updates	in	order	to	distribute	malware	we	call	SUNBURST.		

• The	attacker’s	post	compromise	activity	leverages	multiple	techniques	to	evade	
detection	and	obscure	their	activity,	but	these	efforts	also	offer	some	opportunities	for	
detection.	

• The	campaign	is	widespread,	affecting	public	and	private	organizations	around	the	
world.	

• FireEye	is	releasing	signatures	to	detect	this	threat	actor	and	supply	chain	attack	in	the	
wild.	These	are	found	on	our	public	GitHub	page.	FireEye	products	and	services	can	help	
customers	detect	and	block	this	attack.	

Summary
FireEye has uncovered a widespread campaign, that we are tracking as UNC2452. The actors
behind this campaign gained access to numerous public and private organizations around the
world. They gained access to victims via trojanized updates to SolarWind’s Orion IT monitoring
and management software. This campaign may have begun as early as Spring 2020 and is
currently ongoing. Post compromise activity following this supply chain compromise has included
lateral movement and data theft. The campaign is the work of a highly skilled actor and the
operation was conducted with significant operational security.

SUNBURST Backdoor
SolarWinds.Orion.Core.BusinessLayer.dll is a SolarWinds digitally-signed component of the
Orion software framework that contains a backdoor that communicates via HTTP to third party
servers. We are tracking the trojanized version of this SolarWinds Orion plug-in as SUNBURST.

After an initial dormant period of up to two weeks, it retrieves and executes commands, called
“Jobs”, that include the ability to transfer files, execute files, profile the system, reboot the
machine, and disable system services. The malware masquerades its network traffic as the Orion
Improvement Program (OIP) protocol and stores reconnaissance results within legitimate plugin
configuration files allowing it to blend in with legitimate SolarWinds activity. The backdoor uses
multiple obfuscated blocklists to identify forensic and anti-virus tools running as processes,
services, and drivers.

Figure	1:	SolarWinds	digital	signature	on	software	with	backdoor
Multiple trojanzied updates were digitally signed from March - May 2020 and posted to the
SolarWinds updates website, including:

• hxxps://downloads.solarwinds[.]com/solarwinds/CatalogResources/Core/2019.4/201
9.4.5220.20574/SolarWinds-Core-v2019.4.5220-Hotfix5.msp	

The trojanized update file is a standard Windows Installer Patch file that includes compressed
resources associated with the update, including the trojanized
SolarWinds.Orion.Core.BusinessLayer.dll component. Once the update is installed, the malicious
DLL will be loaded by the legitimate SolarWinds.BusinessLayerHost.exe or
SolarWinds.BusinessLayerHostx64.exe (depending on system configuration). After a dormant

period of up to two weeks, the malware will attempt to resolve a subdomain of avsvmcloud[.]com.
The DNS response will return a CNAME record that points to a Command and Control (C2)
domain. The C2 traffic to the malicious domains is designed to mimic normal SolarWinds API
communications. The list of known malicious infrastructure is available on FireEye’s GitHub	page.
Worldwide Victims Across Multiple Verticals
FireEye has detected this activity at multiple entities worldwide. The victims have included
government, consulting, technology, telecom and extractive entities in North America, Europe,
Asia and the Middle East. We anticipate there are additional victims in other countries and
verticals. FireEye has notified all entities we are aware of being affected.

Post Compromise Activity and Detection Opportunities
We are currently tracking the software supply chain compromise and related post intrusion
activity as UNC2452. After gaining initial access, this group uses a variety of techniques to
disguise their operations while they move laterally. This actor prefers to maintain a light malware
footprint, instead preferring legitimate credentials and remote access for access into a victim’s
environment. This section will detail a few of the notable techniques and outline potential
opportunities for detection.

TEARDROP	and	BEACON	Malware	Used
Multiple SUNBURST samples have been recovered, delivering different payloads. In at least one
instance the attackers deployed a previously unseen memory-only dropper we’ve dubbed
TEARDROP to deploy Cobalt Strike BEACON.

TEARDROP is a memory only dropper that runs as a service, spawns a thread and reads from
the file “gracious_truth.jpg”, which likely has a fake JPG header. Next it checks that
HKU\SOFTWARE\Microsoft\CTF exists, decodes an embedded payload using a custom rolling
XOR algorithm and manually loads into memory an embedded payload using a custom PE-like
file format. TEARDROP does not have code overlap with any previously seen malware. We
believe that this was used to execute a customized Cobalt Strike BEACON.

Mitigation: FireEye has provided two Yara rules to detect TEARDROP available on our GitHub.
Defenders should look for the following alerts from FireEye HX: MalwareGuard and
WindowsDefender:
Process Information

file_operation_closed
file-path*: “c:\\windows\\syswow64\\netsetupsvc.dll
actor-process:
pid: 17900

Window’s defender Exploit Guard log entries: (Microsoft-Windows-Security-
Mitigations/KernelMode event ID 12)

Process”\Device\HarddiskVolume2\Windows\System32\svchost.exe” (PID XXXXX) would
have been blocked from loading the non-Microsoft-signed binary
‘\Windows\SysWOW64\NetSetupSvc.dll’

Attacker	Hostnames	Match	Victim	Environment
The actor sets the hostnames on their command and control infrastructure to match a legitimate
hostname found within the victim’s environment. This allows the adversary to blend into the
environment, avoid suspicion, and evade detection.

Detection Opportunity

The attacker infrastructure leaks its configured hostname in RDP SSL certificates, which is
identifiable in internet-wide scan data. This presents a detection opportunity for defenders --
querying internet-wide scan data sources for an organization’s hostnames can uncover malicious
IP addresses that may be masquerading as the organization. (Note: IP Scan history often shows
IPs switching between default (WIN-*) hostnames and victim’s hostnames) Cross-referencing the
list of IPs identified in internet scan data with remote access logs may identify evidence of this
actor in an environment. There is likely to be a single account per IP address.

IP	Addresses	located	in	Victim’s	Country
The attacker’s choice of IP addresses was also optimized to evade detection. The attacker
primarily used only IP addresses originating from the same country as the victim, leveraging
Virtual Private Servers.

Detection Opportunity
This also presents some detection opportunities, as geolocating IP addresses used for remote
access may show an impossible rate of travel if a compromised account is being used by the
legitimate user and the attacker from disparate IP addresses. The attacker used multiple IP
addresses per VPS provider, so once a malicious login from an unusual ASN is identified, looking
at all logins from that ASN can help detect additional malicious activity. This can be done
alongside baselining and normalization of ASN’s used for legitimate remote access to help
identify suspicious activity.

Lateral	Movement	Using	Different	Credentials
Once the attacker gained access to the network with compromised credentials, they moved
laterally using multiple different credentials. The credentials used for lateral movement were
always different from those used for remote access.

Detection Opportunity
Organizations can use HX’s LogonTracker module to graph all logon activity and analyze
systems displaying a one-to-many relationship between source systems and accounts. This will
uncover any single system authenticating to multiple systems with multiple accounts, a relatively
uncommon occurrence during normal business operations.

Temporary	File	Replacement	and	Temporary	Task	Modification
The attacker used a temporary file replacement technique to remotely execute utilities: they
replaced a legitimate utility with theirs, executed their payload, and then restored the legitimate
original file. They similarly manipulated scheduled tasks by updating an existing legitimate task to
execute their tools and then returning the scheduled task to its original configuration. They
routinely removed their tools, including removing backdoors once legitimate remote access was
achieved.

Detection Opportunity
Defenders can examine logs for SMB sessions that show access to legitimate directories and
follow a delete-create-execute-delete-create pattern in a short amount of time. Additionally,
defenders can monitor existing scheduled tasks for temporary updates, using frequency analysis
to identify anomalous modification of tasks. Tasks can also be monitored to watch for legitimate
Windows tasks executing new or unknown binaries.

This campaign’s post compromise activity was conducted with a high regard for operational
security, in many cases leveraging dedicated infrastructure per intrusion. This is some of the best
operational security that FireEye has observed in a cyber attack, focusing on evasion and
leveraging inherent trust. However, it can be detected through persistent defense.
In-Depth Malware Analysis
SolarWinds.Orion.Core.BusinessLayer.dll (b91ce2fa41029f6955bff20079468448) is a
SolarWinds-signed plugin component of the Orion software framework that contains an

obfuscated backdoor which communicates via HTTP to third party servers. After an initial
dormant period of up to two weeks, it retrieves and executes commands, called “Jobs”, that
include the ability to transfer and execute files, profile the system, and disable system services.
The backdoor’s behavior and network protocol blend in with legitimate SolarWinds activity, such
as by masquerading as the Orion Improvement Program (OIP) protocol and storing
reconnaissance results within plugin configuration files. The backdoor uses multiple blocklists to
identify forensic and anti-virus tools via processes, services, and drivers.

Unique Capabilities
• Subdomain	DomainName	Generation	Algorithm	(DGA)	is	performed	to	vary	DNS	

requests	
• CNAME	responses	point	to	the	C2	domain	for	the	malware	to	connect	to.	
• The	IP	block	of	A	record	responses	controls	malware	behavior	

• Command	and	control	traffic	masquerades	as	the	legitimate	Orion	Improvement	
Program	

• Code	hides	in	plain	site	by	using	fake	variable	names	and	tying	into	legitimate	
components	

Delivery and Installation
Authorized system administrators fetch and install updates to SolarWinds Orion via packages
distributed by SolarWinds’s website. The update package CORE-2019.4.5220.20574-
SolarWinds-Core-v2019.4.5220-Hotfix5.msp (02af7cec58b9a5da1c542b5a32151ba1) contains
the SolarWinds.Orion.Core.BusinessLayer.dll described in this report. After installation, the Orion
software framework executes the .NET program SolarWinds.BusinessLayerHost.exe to load
plugins, including SolarWinds.Orion.Core.BusinessLayer.dll. This plugin contains many legitimate
namespaces, classes, and routines that implement functionality within the Orion framework.
Hidden in plain sight, the class
SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer implements an HTTP-
based backdoor. Code within the logically unrelated routine
SolarWinds.Orion.Core.BusinessLayer.BackgroundInventory.InventoryManager.RefreshInternal
invokes the backdoor code when the Inventory Manager plugin is loaded.

SolarWinds.Orion.Core.BusinessLayer.dll is signed by SolarWinds, using the certificate with
serial number 0f:e9:73:75:20:22:a6:06:ad:f2:a3:6e:34:5d:c0:ed. The file was signed on March 24,
2020.

Initialization
On execution of the malicious
SolarWinds.Orion.Core.BusinessLayer.OrionImprovementBusinessLayer.Initialize method the
sample verifies that its lower case process name hashes to the value 17291806236368054941.
This hash value is calculated as the standard FNV-1A 64-bit hash with an additional XOR by
6605813339339102567 after computing the FNV-1A. This hash matches a process named
"solarwinds.businesslayerhost".

The sample only executes if the filesystem write time of the assembly is at least 12 to 14 days
prior to the current time; the exact threshold is selected randomly from an interval. The sample
continues to check this time threshold as it is run by a legitimate recurring background task. Once
the threshold is met, the sample creates the named pipe 583da945-62af-10e8-4902-
a8f205c72b2e to act as a guard that only one instance is running before reading
SolarWinds.Orion.Core.BusinessLayer.dll.config from disk and retrieving the XML field
appSettings. The appSettings fields’ keys are legitimate values that the malicious logic re-
purposes as a persistent configuration. The key ReportWatcherRetry must be any value other
than 3 for the sample to continue execution.

The sample checks that the machine is domain joined and retrieves the domain name before
execution continues. A userID is generated by computing the MD5 of all network interface MAC
addresses that are up and not loopback devices, the domain name, and the registry value
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MachineGuid. The userID is
encoded via a custom XOR scheme after the MD5 is calculated. The ReportWatcherPostpone
key of appSettings is then read from SolarWinds.Orion.Core.BusinessLayer.dll.config to retrieve
the initial, legitimate value. This operation is performed as the sample later bit packs flags into
this field and the initial value must be known in order to read out the bit flags. The sample then
invokes the method Update which is the core event loop of the sample.

DGA and Blocklists
The backdoor determines its C2 server using a Domain Generation Algorithm (DGA) to construct
and resolve a subdomain of avsvmcloud[.]com. The Update method is responsible for initializing
cryptographic helpers for the generation of these random C2 subdomains. These subdomains are
concatenated with one of the following to create the hostname to resolve:

• .appsync-api.eu-west-1[.]avsvmcloud[.]com	
• .appsync-api.us-west-2[.]avsvmcloud[.]com	
• .appsync-api.us-east-1[.]avsvmcloud[.]com	
• .appsync-api.us-east-2[.]avsvmcloud[.]com	

Process name, service name, and driver path listings are obtained, and each value is hashed via
the FNV-1a + XOR algorithm as described previously and checked against hardcoded blocklists.
Some of these hashes have been brute force reversed as part of this analysis, showing that these
routines are scanning for analysis tools and antivirus engine components. If a blocklisted process
is found the Update routine exits and the sample will continue to try executing the routine until the
blocklist passes. Blocklisted services are stopped by setting their
HKLM\SYSTEM\CurrentControlSet\services\<service_name>\Start registry entries to value 4 for
disabled. Some entries in the service list if found on the system may affect the DGA algorithms
behavior in terms of the values generated. The list of stopped services is then bit-packed into the
ReportWatcherPostpone key of the appSettings entry for the samples’ config file. If any service
was transitioned to disabled the Update method exits and retries later. The sample retrieves a
driver listing via the WMI query Select * From Win32_SystemDriver. If any blocklisted driver is
seen the Update method exits and retries. If all blocklist tests pass, the sample tries to resolve
api.solarwinds.com to test the network for connectivity.

Network Command and Control (C2)
If all blocklist and connectivity checks pass, the sample starts generating domains in a while loop
via its DGA. The sample will delay for random intervals between the generation of domains; this
interval may be any random value from the ranges 1 to 3 minutes, 30 to 120 minutes, or on error
conditions up to 420 to 540 minutes (9 hours). The DNS A record of generated domains is
checked against a hardcoded list of IP address blocks which control the malware’s behavior.
Records within the following ranges will terminate the malware and update the configuration key
ReportWatcherRetry to a value that prevents further execution:

• 10.0.0.0/8	
• 172.16.0.0/12	
• 192.168.0.0/16	
• 224.0.0.0/3	
• fc00::	-	fe00::	
• fec0::	-	ffc0::	
• ff00::	-	ff00::	
• 20.140.0.0/15	
• 96.31.172.0/24	

• 131.228.12.0/22	
• 144.86.226.0/24	

Once a domain has been successfully retrieved in a CNAME DNS response the sample will
spawn a new thread of execution invoking the method HttpHelper.Initialize which is responsible
for all C2 communications and dispatching. The HTTP thread begins by delaying for a
configurable amount of time that is controlled by the SetTime command. The HTTP thread will
delay for a minimum of 1 minute between callouts. The malware uses HTTP GET or HEAD
requests when data is requested and HTTP PUT or HTTP POST requests when C2 output data
is being sent to the server. The PUT method is used when the payload is smaller than 10000
bytes; otherwise the POST method is used. The If-None-Match HTTP header holds an XOR
encoded representation of the userID calculated earlier, with a random array of bytes appended
that is of the same length.

A JSON payload is present for all HTTP POST and PUT requests and contains the keys “userId”,
“sessionId”, and “steps”. The “steps” field contains a list of objects with the following keys:
“Timestamp”, “Index”, “EventType”, “EventName”, “DurationMs”, “Succeeded”, and “Message”.
The JSON key “EventType” is hardcoded to the value “Orion”, and the “EventName” is hardcoded
to “EventManager”. Malware response messages to send to the server are DEFLATE
compressed and single-byte-XOR encoded, then split among the “Message” fields in the “steps”
array. Each “Message” value is Base64 encoded separately. Not all objects in the “steps” array
contribute to the malware message – the integer in the “Timestamp” field must have the 0x2 bit
set to indicate that the contents of the “Message” field are used in the malware message. Step
objects whose bit 0x2 is clear in the Timestamp field contain random data and are discarded
when assembling the malware response.

Steganography
In observed traffic these HTTP response bodies attempt to appear like benign XML related to
.NET assemblies, but command data is actually spread across the many GUID and HEX strings
present. Commands are extracted from HTTP response bodies by searching for HEX strings
using the following regular expression: "\{[0-9a-f-]{36}\}"|"[0-9a-f]{32}"|"[0-9a-f]{16}". Command
data is spread across multiple strings that are disguised as GUID and HEX strings. All matched
substrings in the response are filtered for non HEX characters, joined together, and HEX-
decoded. The first DWORD value shows the actual size of the message, followed immediately
with the message, with optional additional junk bytes following. The extracted message is single-
byte XOR decoded using the first byte of the message, and this is then DEFLATE decompressed.
The first character is an ASCII integer that maps to the JobEngine enum, with optional additional
command arguments delimited by space characters.

Commands are then dispatched to a JobExecutionEngine based upon the command value as
described next.

Supported Commands
Command Value Operation

Idle 0 No operation

Exit 1 Terminate the current thread.

SetTime 2 Sets the delay time between main event loop executions
Delay is in seconds, and varies random between [.9 *
<delay>, 1.1 * <delay>]. If the delay is < 300 it is

doubled on the next execution through the loop, this means
it should settle onto an interval of around [5, 10]
minutes. There is a second, unrelated delay routine
that delays for a random interval between [16hrs, 83hrs]

CollectSystemDescription 3
Profile the local system including hostname, username, OS
version, MAC addresses, IP address, DHCP configuration,
and domain information.

UploadSystemDescription 4
Perform a HTTP request to the specified URL, parse the
results and compare components against unknown hashed
values. Format a report and send to the C2 server.

RunTask 5 Starts a new process with the given file path and arguments

GetProcessByDescription 6

Returns a process listing. If no arguments are provided
returns just the PID and process name. If an argument
is provided it also returns the parent PID and username and
domain for the process owner.

KillTask 7 Terminate the given process, by PID.

GetFileSystemEntries 8 Given a path and an optional match pattern recursively list
files and directories

WriteFile 9
Given a file path and a Base64 encoded string write the
contents of the Base64 decoded string to the given file path.
Write using append mode. Delay for [1s, 2s] after writing is
done.

FileExists 10 Tests whether the given file path exists.

DeleteFile 11 Deletes the specified file path.

GetFileHash 12

Compute the MD5 of a file at a given path and return result
as a HEX string. If an argument is provided, it is the
expected MD5 hash of the file and returns an error if the
calculated MD5 differs.

ReadRegistryValue 13 Arbitrary registry read from one of the supported hives

SetRegistryValue 14 Arbitrary registry write from one of the supported hives.

DeleteRegistryValue 15 Arbitrary registry delete from one of the supported hives

GetRegistrySubKeyAndValueNames

16 Returns listing of subkeys and value names beneath the

given registry path

Reboot 17 Attempts to immediately trigger a system reboot.

Indicators and Detections to Help the Community
To empower the community to detect this supply chain backdoor, we are publishing indicators
and detections to help organizations identify this backdoor and this threat actor. The signatures
are a mix of Yara, IOC, and Snort formats.

A list of the detections and signatures are available on the FireEye GitHub repository found here.
We are releasing detections and will continue to update the public repository with overlapping
detections for host and network-based indicators as we develop new or refine existing ones. We
have found multiple hashes with this backdoor and we will post updates of those hashes.
MITRE ATT&CK Techniques Observed
ID Description

T1012 Query Registry

T1027 Obfuscated Files or Information

T1057 Process Discovery

T1070.004 File Deletion

T1071.001 Web Protocols

T1071.004 Application Layer Protocol: DNS

T1083 File and Directory Discovery

T1105 Ingress Tool Transfer

T1132.001 Standard Encoding

T1195.002 Compromise Software Supply Chain

T1518 Software Discovery

T1518.001 Security Software Discovery

T1543.003 Windows Service

T1553.002 Code Signing

T1568.002 Domain Generation Algorithms

T1569.002 Service Execution

T1584 Compromise Infrastructure

Immediate Mitigation Recommendations
SolarWinds recommends all customers immediately upgrade to Orion Platform release 2020.2.1
HF 1, which is currently available via the SolarWinds Customer Portal. In addition, SolarWinds
has released additional mitigation and hardening instructions here.
In the event you are unable to follow SolarWinds’ recommendations, the following are immediate
mitigation techniques that could be deployed as first steps to address the risk of trojanized
SolarWinds software in an environment. If attacker activity is discovered in an environment, we
recommend conducting a comprehensive investigation and designing and executing a
remediation strategy driven by the investigative findings and details of the impacted environment.

• Ensure	that	SolarWinds	servers	are	isolated	/	contained	until	a	further	review	and	
investigation	is	conducted.	This	should	include	blocking	all	Internet	egress	from	
SolarWinds	servers.	

• If	SolarWinds	infrastructure	is	not	isolated,	consider	taking	the	following	steps:	
• Restrict	scope	of	connectivity	to	endpoints	from	SolarWinds	servers,	

especially	those	that	would	be	considered	Tier	0	/	crown	jewel	assets	
• Restrict	the	scope	of	accounts	that	have	local	administrator	privileged	on	

SolarWinds	servers.	
• Block	Internet	egress	from	servers	or	other	endpoints	with	SolarWinds	

software.	
• Consider	(at	a	minimum)	changing	passwords	for	accounts	that	have	access	to	

SolarWinds	servers	/	infrastructure.	Based	upon	further	review	/	investigation,	
additional	remediation	measures	may	be	required.	

• If	SolarWinds	is	used	to	managed	networking	infrastructure,	consider	conducting	a	
review	of	network	device	configurations	for	unexpected	/	unauthorized	modifications.	
Note,	this	is	a	proactive	measure	due	to	the	scope	of	SolarWinds	functionality,	not	based	
on	investigative	findings.	

Acknowledgements

This blog post was the combined effort of numerous personnel and teams across FireEye coming
together. Special thanks to:

Andrew Archer, Doug Bienstock, Chris DiGiamo, Glenn Edwards, Nick Hornick, Alex Pennino,
Andrew Rector, Scott Runnels, Eric Scales, Nalani Fraser, Sarah Jones, John Hultquist, Ben
Read, Jon Leathery, Fred House, Dileep Jallepalli, Michael Sikorski, Stephen Eckels, William
Ballenthin, Jay Smith, Alex Berry, Nick Richard, Isif Ibrahima, Dan Perez, Marcin Siedlarz, Ben
Withnell, Barry Vengerik, Nicole Oppenheim, Ian Ahl, Andrew Thompson, Matt Dunwoody, Evan
Reese, Steve Miller, Alyssa Rahman, John Gorman, Lennard Galang, Steve Stone, Nick Bennett,
Matthew McWhirt, Mike Burns, Omer Baig.

Also special thanks to Nick Carr, Christopher Glyer, and Ramin Nafisi from Microsoft.

