

Uncovering a macOS App Sandbox escape
vulnerability: A deep dive into CVE-2022-
26706
Microsoft uncovered a vulnerability in macOS that could allow specially crafted codes to
escape the App Sandbox and run unrestricted on the system. We shared these findings with
Apple through Coordinated Vulnerability Disclosure (CVD) via Microsoft Security
Vulnerability Research (MSVR) in October 2021. A fix for this vulnerability, now identified
as CVE-2022-26706, was included in the security updates released by Apple on May 16,
2022. Microsoft shares the vulnerability disclosure credit with another researcher, Arsenii
Kostromin (0x3c3e), who discovered a similar technique independently.
We encourage macOS users to install these security updates as soon as possible. We also want
to thank the Apple product security team for their responsiveness in fixing this issue.
The App Sandbox is Apple’s access control technology that application developers must
adopt to distribute their apps through the Mac App Store. Essentially, an app’s processes are
enforced with customizable rules, such as the ability to read or write specific files. The App
Sandbox also restricts the processes’ access to system resources and user data to minimize the
impact or damage if the app becomes compromised. However, we found that specially crafted
codes could bypass these rules. An attacker could take advantage of this sandbox escape
vulnerability to gain elevated privileges on the affected device or execute malicious
commands like installing additional payloads.
We found the vulnerability while researching potential ways to run and detect malicious
macros in Microsoft Office on macOS. For backward compatibility, Microsoft Word can read
or write files with an “~$” prefix. Our findings revealed that it was possible to escape the
sandbox by leveraging macOS’s Launch Services to run an open –stdin command on a
specially crafted Python file with the said prefix.
Our research shows that even the built-in, baseline security features in macOS could still be
bypassed, potentially compromising system and user data. Therefore, collaboration between
vulnerability researchers, software vendors, and the larger security community remains
crucial to helping secure the overall user experience. This includes responsibly disclosing
vulnerabilities to vendors.
In addition, insights from this case study not only enhance our protection technologies, such
as Microsoft Defender for Endpoint, but they also help strengthen the security strategies of
software vendors and the computing landscape at large. This blog post thus provides details of
our research and overviews of similar sandbox escape vulnerabilities reported by other
security researchers that helped enrich our analysis.

How macOS App Sandbox works
In a nutshell, macOS apps can specify sandbox rules for the operating system to enforce on
themselves. The App Sandbox restricts system calls to an allowed subset, and the said system
calls can be allowed or disallowed based on files, objects, and arguments. Simply put, the
sandbox rules are a defense-in-depth mechanism that dictates the kind of operations an

application can or can’t do, regardless of the type of user running it. Examples of such
operations include:

§ the kind of files an application can or can’t read or write;
§ whether the application can access specific resources such as the camera or the

microphone, and;
§ whether the application is allowed to perform inbound or outbound network

connections.

Figure 1. Illustration of a sandboxed app, from the App Sandbox documentation (photo credit:
Apple)

Therefore, the App Sandbox is a useful tool for all macOS developers in providing baseline
security for their applications, especially for those that have large attack surfaces and run
user-provided code. One example of these applications is Microsoft Office.
Sandboxing Microsoft Office in macOS
Attackers have targeted Microsoft Office in their attempts to gain a foothold on devices and
networks. One of their techniques is abusing Office macros, which they use in social
engineering attacks to trick users into downloading malware and other payloads.
On Windows systems, Microsoft Defender Application Guard for Office helps secure
Microsoft Office against such macro abuse by isolating the host environment using Hyper-V.
With this feature enabled, an attacker must first be equipped with a Hyper-V guest-to-host
vulnerability to affect the host system—a very high bar compared to simply running a macro.
Without a similar isolation technology and default setting on macOS, Office must rely on the
operating system’s existing mitigation strategies. Currently, the most promising technology is
the macOS App Sandbox.
Viewing the Microsoft sandbox rules is quite straightforward with the codesign utility. Figure
2 below shows the truncated sandbox rules for Microsoft Word:

Figure 2. Viewing the Microsoft Word sandbox rules with the codesign utility

One of the rules dictates the kind of files the application is allowed to read or write. As seen
in the screenshot of the syntax below, Word is allowed to read or write files with filenames
that start with the “~$” prefix. The reason for this rule is rooted in the way Office works
internally and remains intact for backward compatibility.

Figure 3. File read and write sandbox rule for Microsoft Word

Despite the security restrictions imposed by the App Sandbox’s rules on applications, it’s
possible for attackers to bypass the said rules and let malicious codes “escape” the sandbox
and execute arbitrary commands on an affected device. These codes could be hidden in a
specially crafted Word macro, which, as mentioned earlier, is one of the attackers’ preferred
entry points.
Previously reported Office-specific sandbox escape vulnerability

For example, in 2018, MDSec reported a vulnerability in Microsoft Office on macOS that
could allow an attacker to bypass the App Sandbox. As explained in their blog post, MDSec’s
proof-of-concept (POC) exploit took advantage of the fact that Word could drop files with
arbitrary contents to arbitrary directories (even after passing traditional permission checks), as
long as these files’ filenames began with a “~$” prefix. This bypass was relatively
straightforward: have a specially crafted macro drop a .plist file in the
user’s LaunchAgents directory.
The LaunchAgents directory is a well-known persistence mechanism in macOS. PLIST files
that adhere to a specific structure describe (that is, contain the metadata of) macOS launch
agents initiated by the launchd process when a user signs in. Since these launch agents will be
the children of launchd, they won’t inherit the sandbox rules enforced onto Word, and
therefore will be out of the Office sandbox.
Shortly after the above vulnerability was reported, Microsoft deployed a fix that denied file
writes to the LaunchAgents directory and other folders with similar implications. The said
disclosure also prompted us to look into different possible sandbox escapes in Microsoft
Word and other applications.

Exploring Launch Services as means of escaping the sandbox
In 2020, several blog posts described a generic sandbox escape vulnerability in
macOS’s /usr/bin/open utility, a command commonly used to launch files, folders, and
applications just as if a user double-clicked them. While open is a handy command, it doesn’t
create child processes on its own. Instead, it performs an inter-process communication (IPC)
with the macOS Launch Services, whose logic is implemented in the context of
the launchd process. Launch Services then performs the heavy lifting by resolving the handler
and launching the right app. Since launchd creates the process, it’s not restricted by the
caller’s sandbox, similar to how MDSec’s POC exploit worked in 2018.
However, using open for sandbox escape purposes isn’t trivial because the destination app
must be registered within Launch Services. This means that, for example, one couldn’t run
files like osascript outside the sandbox using open. Our internal offensive security team
therefore decided to reassess the open utility for sandbox escape purposes and use it in a
larger end-to-end attack simulation.
Our obvious first attempt in creating a POC exploit was to create a macro that launches a shell
script with the Terminal app. Surprisingly, the POC didn’t work because files dropped from
within the sandboxed Word app were automatically given the extended
attribute com.apple.quarantine (the same one used by Safari to keep track of internet-
downloaded files, as well as by Gatekeeper to block malicious files from executing), and
Terminal simply refused to run files with that attribute. We also tried using Python scripts, but
the Python app had similar issues running files having the said attribute.
Our second attempt was to use application extensibility features. For example, Terminal
would run the default macOS shell (zsh), which would then run arbitrary commands from files
like ~/.zshenv before running its own command line. This meant that dropping a .zshenv file
in the user’s home directory and launching the Terminal app would cause the sandbox escape.
However, due to Word’s sandbox rules, dropping a .zshenv file wasn’t straightforward, as the
rules only allowed an application to write to files that begin with the “~$” prefix.
However, there is an interesting way of writing such a file indirectly. macOS was shipped
with an application called Archive Utility responsible of extracting archive files (such as ZIP
files). Such archives were extracted without any user interaction, and the files inside an
archive were extracted in the same directory as the archive itself. Therefore, our second POC
worked as follows:

1. Prepare the payload by creating a .zshenv file with arbitrary commands and placing it
in a ZIPfile. Encode the ZIPfile contents in a Word macro and drop those contents into
a file “~$exploit.zip” in the user’s home directory.

2. Launch Archive Utility with the open command on the “~$exploit.zip” file. Archive
Utility ran outside the sandbox (since it’s the child process of /usr/bin/open) and was
therefore permitted to create files with arbitrary names. By default, Archive Utility
extracted the files next to the archive itself—in our case, the user’s home directory.
Therefore, this step successfully created a .zshenv file with arbitrary contents in the
user’s home directory.

3. Launch the Terminal app with the open command. Since Terminal
hosted zsh and zsh ran commands from the .zshenv file, the said file could escape the
Word sandbox successfully.

Figure 4. Preparing a Word macro with our sandbox escape for an internal Red Team
operation

Perception Point’s CVE-2021-30864
In October 2021, Perception Point published a blog post that discussed a similar finding (and
more elegant, in our opinion). In the said post, Perception Point released details about their
sandbox escape (now identified as CVE-2021-30864), which used the following facts:

1. Every sandboxed process had its own container directory that’s used as a “scratch
space.” The sandboxed process could write arbitrary files, including arbitrary
filenames, to that directory unrestricted.

2. The open command had an interesting –env option that could set or override arbitrary
environment variables for the launched app.

Therefore, Perception Point’s POC exploit was cleverly simple:

1. Drop a .zshenv file in the container directory. This was allowed because sandbox rules
weren’t enforced on that directory.

2. Launch Terminal with the open command but use the –env option to override
the HOME environment variable to point to the container directory. This
made zsh consider the user’s home directory to be the container directory, and run
commands from the planted .zshenv file.

Apple has since patched the vulnerability Perception Point reported in the latest version of
macOS, Monterey. While we could still create the “~$exploit.zip” file in the user’s home
directory, using open to launch the Archive Utility on the ZIP file now resulted in it being
extracted to the Downloads folder. While this is an interesting behavior, we could no longer
use it for sandbox escape purposes.

Final exploit attempt: Revisiting the ‘open’ command
After discovering that Apple has fixed both variants that abuse .zshenv, , we decided to
examine all the command line options of the open command. Soon after, we came across the
following:

Figure 5. The –stdin option in the open utility as presented by its manual entry
As mentioned earlier, we couldn’t run Python with a dropped .py file since Python refuses to
run files with the “com.apple.quarantine” extended attribute. We also considered abusing
the PYTHONSTARTUP environment variable, but Apple’s fix to CVE-2021-30864 apparently
prevented that option, too. However, –stdin bypassed the “com.apple.quarantine” extended
attribute restriction, as there was no way for Python to know that the contents from its
standard input originated from a quarantined file.
Our POC exploit thus became simply as follows:

1. Drop a “~$exploit.py” file with arbitrary Python commands.
2. Run open –stdin=’~$exploit.py’ -a Python, which runs the Python app with our

dropped file serving as its standard input. Python happily runs our code, and since it’s
a child process of launchd, it isn’t bound to Word’s sandbox rules.

Figure 6. Sample minimal POC exploit code

We also came up with a version that’s short enough to be a Twitter post:

Figure 7. “Tweetable” POC exploit

Detecting App Sandbox escapes with Microsoft Defender for
Endpoint
Since our initial discovery of leveraging Launch Services in macOS for generic sandbox
escapes, we have been using our POC exploits in Red Team operations to emulate end-to-end
attacks against Microsoft Defender for Endpoint, improve its capabilities, and challenge our
detections. Shortly after our Red Team used our first POC exploit, our Blue Team members
used it to train artificial intelligence (AI) models to detect our exploit not only in Microsoft
Office but also on any app used for a similar Launch Services-based sandbox escape.
After we learned of Perception Point’s technique and created our own new exploit technique
(the Python POC), our Red Team saw another opportunity to fully test our own detection
durability. Indeed, the same set of detection rules that handled our first sandbox escape
vulnerability still turned out to be durable—even before the vulnerability related to our second
POC exploit was patched.

Figure 8. Microsoft Defender for Endpoint detecting Office sandbox escape

For Defender for Endpoint customers, such detection durability feeds into the product’s threat
and vulnerability management capabilities, which allows them to quickly discover, prioritize,
and remediate misconfigurations and vulnerabilities—including those affecting non-Windows
devices—through a unified security console.

